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Abstract. Sensor network analysis has become a challenging task. The
detection of sensor anomalies is one of the most prominent topics in this
research area. In the past, researchers mainly focused on the detection
and analysis of single-sensor anomalies. In this paper, we shift the focus
from a local approach, aimed to detect anomalies on single sensors, to a
global one, aiming at detecting and investigating the consequences, on
the whole sensor network and/or its subnetworks, of anomalies present
in one or more (heterogeneous) sensors.
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1 Introduction

In the last few years, research on Wireless Sensor Networks (WSNs) has been
ignited by important advances in various technological areas, such as wireless
communications, digital electronics and micro-electro-mechanical systems. These
improvements allowed for an easy development of low-power and low-cost multi-
functional sensors and networks thereof. Sensor networks usually include a large
number of nodes, each of which may sense several measures. Cooperation among
nodes is usually sought for in such networks. Sensor nodes are usually posi-
tioned either inside or very close to observed events, and the main objective is
to provide users with a better understanding of the environment in which sen-
sors are deployed, thus giving the opportunity to acquire new information and
intelligence. While the management of sensor networks and the development of
robust data acquisition layers received much attention in the literature, one big
open challenge in this research area is anomaly detection [4, 5]. Anomalies can
be generated by either malfunctioning sensors or changes in the monitored en-
vironment. In most cases, being able to distinguish between the two scenarios is
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a challenging task. Most of the past approaches for anomaly detection focused
on the analysis of data produced by each single device [16]. The most notable
approaches in this setting can be grouped in four categories, namely: (i) rule-
based detection [8], (ii) statistical techniques [12], (iii) graph-based techniques
[13], and (iv) data mining and computational intelligence-based techniques [15].
Instead, network-based approaches for anomaly detection in WSNs received less
attention [3, 9, 2, 17]. In fact, in spite of a strict complementarity and correlation
between network analysis and WSNs, only in the latest years, researchers have
begun to apply network analysis-based techniques to WSNs. However, they have
only proposed the application of classical network analysis parameters to this
context. Indeed, most of the proposed approaches employ centrality measures
[14], which allow the detection of anomalies of only one node at a time.

In this paper, we aim at introducing new solutions for the analysis of het-
erogeneous sensors organized as a network. In particular, our techniques will
be based on the evaluation of the connectivity of the whole WSN and its sub-
networks (instead of on node centrality), and are mainly focused on potential
anomalies involving more sensors located therein. They adopt a metric capable
of uniformly handling measures provided by heterogeneous sensors, as well as a
dashboard of network analysis parameters. This way, they allow the detection
of anomalies involving more (heterogeneous) sensors, and the evaluation of the
impact of these anomalies on the whole sensor network and its subnetworks. The
plan of this paper is as follows. In Section 2, we introduce our model used to
represent WSNs and our anomaly detection approach. In Section 3, we present
some preliminary results on tests carried out on a sensor network, along with
some discussions. Conclusions and future work are illustrated in Section 4.

2 Methods

2.1 Network construction

Let W be a WSN. Without loss of generality, assume that the corresponding
sensors can be partitioned along two orthogonal dimensions4. In the scenario
considered here, these dimensions are location and physical quantities to eval-
uate (in particular, we consider p = 3 physical quantities, i.e., temperature,
lightness and humidity). Assume that the WSN covers l locations (in partic-
ular, we consider l = 3 locations, named A, B and C in the following) and
that one location contains n devices, each measuring p physical quantities. As a
consequence, the overall number of sensors is s = pln.

A network N = 〈V,E〉 can be associated with W. Here, V is the set of the
nodes of N . Each node vi ∈ V corresponds to a sensor and has associated a label
〈li, pi〉, where li represents its location and pi denotes the physical quantity it
measures. E is the set of the edges of N . Each edge eij connects the nodes vi
and vj . It can be represented as eij = (vi, vj , wij). Here, wij is a measure of

4 Actually, the number of dimensions could be greater than two, without requiring
any change of the approach.
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“distance” between vi and vj . It is an indicator of the non-correlation level of
the sensors associated with vi and vj . Actually, each parameter representing this
feature could be adopted in our model. In the experiments presented in this paper
we adopted Multi-Parameterized Edit Distance (MPED) [1] for its capability of
measuring the non-correlation level of sensors regarding heterogeneous physical
quantities, characterized by different units of measure and possible data shifts.
N can be partitioned along one or both dimensions. We indicate by Np =

〈Vp, Ep〉 the subnets obtained by taking only the nodes that correspond to
the sensors measuring the physical quantity p. Here, p ∈ {l, t, h} can denote
lightness, temperature and humidity, respectively. Analogously, we indicate by
Nq = 〈Vq, Eq〉 the subnets obtained by taking only the nodes that correspond to
the sensors operating at the location q. Here, q ∈ {A,B,C}. Finally, we denote
by Npq = 〈Vpq, Epq〉 the subnet obtained by considering only the nodes corre-
sponding to the sensors that measure the physical quantity p and operate in the
location q, along with the edges linking them.

2.2 Network parameters

As pointed out in the Introduction, we use several parameters to construct our
dashboard supporting the extraction of knowledge about environment changes.
The first four parameters are derived from classical network theory; the fifth
is derived from a particular centrality measure proposed in [10]; the last is in-
troduced by us. In this section, we present an overview of these parameters. In
the following, we define all of them on a reference network N = 〈V,E〉. The
first parameter is the Characteristic Path Length, also known as the Average
Shortest Path Length. It is defined as the average length of the shortest paths
connecting all possible pairs of network nodes. More formally, let l(vi, vj) be
the length of the shortest path between vi and vj . The Characteristic Path
Length LN of N is defined as: LN = 1

|V |(|V |−1)
∑
vi∈V

∑
vj∈V,vj 6=vi l(vi, vj).

The second parameter is the Average Node Connectivity. Given two nodes vi
and vj , their connectivity c(vi, vj) represents the minimum number of edges
that need to be removed to disconnect them. The Average Node Connectivity
CN is defined as: CN = 1

|V |(|V |−1)
∑
vi∈V

∑
vj∈V,vj 6=vi c(vi, vj). The third pa-

rameter is the Average Number of Simple Paths. Given two nodes vi and vj ,
we indicate by p(vi, vj) the number of simple paths (i.e., paths with no re-
peated nodes) between them. Then, we define the Average Number of Simple
Paths PN as: PN = 1

|V |(|V |−1)
∑
vi∈V

∑
vj∈V,vj 6=vi p(vi, vj). The fourth parame-

ter is the Average Clustering Coefficient. In order to define it, we must prelim-
inarily introduce the neighborhood nbh(vi) of a node vi as follows: nbh(vi) =
{vj |eij ∈ E}. Then, we define the Clustering Coefficient of a node vi as: s(vi) =
2·|{ejk|vj ,vk∈nbh(vi),ejk∈E}|
|nbh(vi)|·(|nbh(vi)|−1) . Finally, we define the Average Clustering Coefficient

as: SN = 1
|V |

∑
vi∈V s(vi). The fifth parameter is the Average Closeness Vitality.

Given a node vi, the closeness vitality t(vi) represents the increase in the sum
of distances between all the pairs of nodes of N , when vi is excluded from N
[10]. The Average Closeness Vitality TN is defined as: TN = 1

|V |
∑
vi∈V t(vi).
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The sixth parameter (i.e., the one introduced by us) is the Connection Coeffi-
cient. It starts from the observation that, in network analysis, one of the most
powerful tools for investigating the connection level of a network is the concept
of clique. As a consequence, it is reasonable to adopt this concept to evaluate
the cohesion of a network. This coefficient takes the following considerations
into account: (i) both the dimension and the number of cliques are important
as connectivity indicators; (ii) the concept of clique is intrinsically exponential;
in other words, a clique of dimension n + 1 is exponentially more complex than
a clique of dimension n.

In order to define the Connection Coefficient it is necessary to introduce a
support network N π = 〈V,Eπ〉, obtained by removing from N the edges with an
“excessive” weight; observe that the nodes of N π are the same as the nodes of
N . To formally define Eπ, we employ the distribution of the weights of the edges
of N . Specifically, let maxE (resp., minE) be the maximum (resp., minimum)
weight of an edge of E. It is possible to define a parameter stepE = maxE−minE

10 ,
which represents the length of a “step” of the interval between minE and maxE .
We can define dk(E), 0 ≤ k ≤ 9, as the number of the edges of E whose weights
belong to the interval between minE + k · stepE and minE + (k + 1) · stepE .
All these intervals are closed on the left and open on the right, except for the
last one that is closed both on the left and on the right. Eπ can be defined as:
Eπ = {eij ∈ E|eij ∈

⋃
k≤thmax

dk(E)}. We have experimentally set thmax = 6.
We are now able to define the Connection Coefficient QN of N . In particular,
let C be the set of the cliques of N π; let Ck be the set of cliques of dimension
k of N π; finally, let |Ck| be the cardinality (i.e., the number of cliques) of Ck.

Then, QN is defined as: QN =
∑|V |
k=1 |Ck| · 2k.

2.3 Approach to knowledge extraction

The idea underlying our approach is that, if some changes occur on sensor data
streams, then some variations can be observed in some or all the dashboard
parameters, when measured on the whole network, and/or on some of its sub-
networks, depending on the number, the kind and the location of involved sen-
sors. Our approach consists of a training phase and a testing phase. To carry
out them, we employed available data (see Section 3.1) and, according to the
holdout technique, we partitioned these data in such a way as to use 2/3 of them
for the training phase and 1/3 of them for the testing phase. As for the training
phase, we considered the following situations: (1) all sensors behaved correctly;
(2) two sensors in location A and two sensors in location B were perturbed,
in such a way as to decrease humidity; (3) two sensors in location B and two
sensors in location C were perturbed, in such a way as to decrease lightness; (4)
two sensors in location A and two sensors in location C were perturbed, in such
a way as to increase lightness. Obtained results, along with the corresponding
discussion, are presented in Section 3. After the training phase, we started the
testing phase. In this case, we considered the following situations: (1) all sensors
behaved correctly; (2) two sensors in location B and two sensors in location
C were perturbed, in such a way as to decrease humidity; (3) two sensors in
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location A and two sensors in location C were perturbed, in such a way as to
decrease lightness; (4) two sensors in location A and two sensors in location B
were perturbed, in such a way as to increase lightness. Obtained results, along
with the corresponding discussion, are presented in Section 3. Here, we simply
point out that our approach behaved very well and was capable of correctly
identifying all perturbations.

Finally, we applied our approach to the following situations: (1) one sensor
in the location A and one sensor in the location B were perturbed, in such a way
as to decrease humidity; (2) one sensor in the locations A and C was perturbed,
in such a way as to increase lightness, and one sensor in the locations B and
C was perturbed, in such a way as to decrease the same physical quantity; (3)
three sensors in the location A and one sensor in the location B were perturbed,
in such a way as to decrease humidity; (4) one sensor in the location A was
perturbed, in such a way as to increase humidity; (5) one sensor in the location
B was perturbed, in such a way as to increase lightness. Obtained results, along
with the corresponding discussion, are presented in Section 3. Here, we anticipate
that our approach showed its suitability to detect almost all perturbations.

3 Results

3.1 Testbed

To collect data for the experiments introduced in Section 2.3, we built a WSN by
following specific guidelines. In particular, we organized devices in a multi-hop
Wireless Sensor Area Network (WSAN) and managed them through the Build-
ing Management Framework (BMF) [6]. This is a framework for domain-specific
networks, which offers an efficient and flexible management of WSANs deployed
in indoor areas by allowing users to take advantage of sensing/actuation intelli-
gent techniques and fast prototyping of WSAN applications. BMF enabled the
use of heterogeneous WSANs through a base station, which acted both as data
collector and network configurator. Communication between base station and
devices was carried out by means of the BMF Communication Protocol, an ap-
plication level protocol built on top of multi-hop network protocols [11, 7]. We
composed the WSAN using MICAz sensor devices, providing 128 kB for pro-
gram storage, 512 kB for data storage, and 4 kB of RAM. Devices were powered
mainly by means of external power. They were configured to communicate with
the base station, sending data every minute. To test our approach, we synthet-
ically injected several anomalies at pre-determined time slots. In particular, to
increase lightness, we employed artificial sources of lightness with controlled in-
tensity, whereas to reduce lightness, we applied artificial lightness filters. Finally,
humidity was controlled by chemicals. Our network consisted of 9 devices labeled
by increasing numbers. Each device included 3 sensors, which retrieved values
for humidity, lightness and temperature. Devices 1, 2 and 3 have been positioned
in location A, devices 4, 5 and 6 operated in location B, devices 7, 8 and 9 were
situated in location C. A, B and C were three different rooms on the same floor
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of a building. Finally, we collected data for 24 days without perturbations and
other 36 days with several perturbations, as described in Section 2.3.

3.2 Obtained results and Discussion

In this section, we report the results obtained by performing all the experiments
mentioned in Section 2.3. Preliminarily, we observe that the definition of the six
coefficients forming our dashboard suggests that a decrease of the connection
level of a network or a subnetwork leads to: (i) an increase of LN and TN ; (ii) a
decrease of CN , PN , SN and QN . The purpose of the training phase was to find
the optimal values of some thresholds underlying our approach (for instance,
the value of thmax in the definition of Connection Coefficient - see Section 2.2)
and to have a first idea of its behavior. In Table 1, we report all the results
regarding the training phase after the optimal values of thresholds were set.
In particular, this table consists of four sub-tables, each corresponding to one
of the four situations mentioned in Section 2.3. For each situation, we report
the values of the six parameters of the dashboard for the overall network and
the subnetworks Nt, Nl, Nh, NA, NB and NC (see Section 2.1). In this table,
Situation 1 represents the correct one. In Situation 2, we observe: (i) a very high
increase of LN and TN , along with a very high decrease of CN , PN , SN and
QN for the network Nh; (ii) a high increase of LN and TN , along with a high
decrease of CN , PN , SN and QN for the networks NA and NB ; (iii) a moderate
increase of LN and TN , along with a moderate decrease of CN , PN , SN and
QN for the overall network. In Situation 3 (resp., 4), we observe: (i) a very high
increase of LN and TN , along with a very high decrease of CN , PN , SN and QN
for the network Nl; (ii) a high increase of LN and TN , along with a high decrease
of CN , PN , SN and QN for the networks NB and NC (resp., NA and NC); (iii)
a moderate increase of LN and TN , along with a moderate decrease of CN , PN ,
SN and QN for the overall network. These results confirm that our approach
is really capable of capturing the perturbations in wireless sensor networks or
subnetworks caused by sensor anomalies (and, indirectly, it is able to evaluate
the network and subnetwork resilience to sensor anomalies). The only weakness
revealed by this first test is that, in its current version, our approach is not able
to tell us if these perturbations are caused by an increase or a decrease of the
corresponding physical quantity.

The purpose of the testing phase was to verify both the setting of the thresh-
old values and the corresponding results detected during the training phase. In
Table 2, we report all the results regarding this phase. Observe that the situ-
ations considered during this phase are the same as the ones examined during
the training phase; however, we modified the subnetworks (among A, B and C)
involved in each perturbation in such a way as to prevent overfitting. Obtained
results confirm that the selection of the threshold values performed during the
training phase was correct. They also confirm all the observations about the
features of our approach, which we drew at the end of the training phase.
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Network LN CN PN TN QN SN
Overall 1.1054 22.4387 6508290 64.2548 1163264 0.8944
Nt 1.0322 7.1056 14232 15.1429 592 0.8413
Nl 1.0451 7.1111 13200 16.6667 592 0.8595
Nh 1.0278 7.5833 16758 16.9143 512 0.9722
NA 1.1944 5.6944 8012 23.7241 224 0.8339
NB 1.1667 5.9444 9274 22.4000 256 0.8582
NC 1.1944 6.0556 7896 23.7241 288 0.7794

Overall 1.1795 20.0684 4652472 74.7500 227328 0.8239
Nt 1.1189 6.4444 10376 21.1613 384 0.8212
Nl 1.1011 6.5833 11816 20.0000 320 0.7905
Nh 1.4167 3.9444 2268 38.0952 96 0.5270
NA 1.3611 4.5000 3208 34.0870 120 0.5582
NB 1.3456 4.7778 4572 32.0800 144 0.5858
NC 1.1833 6.0444 7828 26.9091 248 0.7832

Overall 1.2194 19.1937 3790486 81.2263 99840 0.7796
Nt 1.2556 5.8778 9924 20.8824 412 0.7392
Nl 1.5000 4.1111 6102 26.3704 192 0.6000
Nh 1.0556 7.2778 14924 17.8824 512 0.9392
NA 1.2111 5.4000 7990 23.0000 200 0.8571
NB 1.3222 4.5278 5990 29.1429 108 0.5630
NC 1.3333 4.7778 3824 32.0000 120 0.5407

Overall 1.2394 18.1937 3480632 80.2263 97650 0.7823
Nt 1.2356 5.6648 9633 21.2435 408 0.7491
Nl 1.5200 3.9345 6260 27.3221 192 0.5800
Nh 1.0776 6.9318 13924 17.7623 512 0.9154
NA 1.3782 4.4987 5843 28.2322 108 0.661
NB 1.1911 5.1000 7232 23.0000 206 0.8200
NC 1.3433 4.6578 3126 31.6850 120 0.5207

Table 1. Results obtained by our approach during the training phase

After the testing phase confirmed the suitability of our approach, we applied
it to new situations not considered during the previous phases. These situations
are described in detail in Section 2.3. In Table 3, we report the corresponding
results. From their analysis we can draw very interesting observations. In par-
ticular, in Situation 1, we obtain the same trend as the one seen in Situation 2
of the training phase. However, the perturbation degree is more reduced. This
is correct because, for locations A and B, we perturbed one sensor, instead of
two. In Situation 2, we observe: (i) a very high increase of LN and TN , along
with a very high decrease of CN , PN , SN and QN for the network Nl; these
increases and decreases are comparable with the ones observed in Situation 3 of
the training phase; (ii) a moderate (resp., high, very high) increase of LN and
TN , along with a moderate (resp., high) decrease of CN , PN , SN and QN , for
the networks NA and NB (resp., NC , Nl); (iii) a moderate increase of LN and
TN , along with a moderate decrease of CN , PN , SN and QN , for the overall net-
work. Observe that, since our approach considers perturbations, but it currently
does not distinguish between increases and decreases, even if, in the network
Nl, there are opposite perturbations in two lightness sensors, their consequences
are not nullified by our approach, but, on the contrary, are “combined” by it.
In our opinion, this is a correct behavior of our approach. In Situation 3, we
observe: (i) an increase (resp., decrease) of LN and TN (resp., CN , PN , SN and
QN ), comparable with the one of Situation 2 of the training phase for both the
overall network and the network Nh; (ii) a significant (resp., moderate) increase
of LN and TN , along with a significant (resp., moderate) decrease of CN , PN ,
SN and QN for the network NA (resp., NB). In Situation 4 (resp., 5), we ob-
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Network LN CN PN TN QN SN
Overall 1.1135 20.4387 7120293 65.3746 1163264 0.9144
Nt 1.0411 6.5306 13939 15.1529 592 0.8712
Nl 1.0361 6.2480 13737 17.1227 592 0.8891
Nh 1.0235 7.3311 16123 16.8242 512 0.8920
NA 1.1826 5.4129 7910 22.7241 228 0.8451
NB 1.1700 5.8331 8992 21.4000 256 0.8112
NC 1.1929 6.2410 7786 23.7241 288 0.8042

Overall 1.1896 20.1224 4993459 72.63 294629 0.8484
Nt 1.1289 6.2468 11001 22.1982 320 0.8391
Nl 1.2133 6.6631 10829 21.0782 384 0.8081
Nh 1.5177 3.8104 3124 37.1719 112 0.5328
NA 1.1922 6.2324 7128 27.8801 208 0.7312
NB 1.3232 4.9188 4492 31.9500 128 0.5558
NC 1.3511 4.4780 3198 33.0870 118 0.5182

Overall 1.2766 20.2308 4290486 81.3094 97744 0.7824
Nt 1.3111 5.5833 9850 20.0000 258 0.7825
Nl 1.4389 4.0833 3438 25.9750 96 0.6412
Nh 1.0242 7.3611 13978 18.4421 384 0.9825
NA 1.3056 4.5278 4762 30.1515 108 0.5713
NB 1.1896 5.5278 7288 22.1429 216 0.8462
NC 1.2825 4.9444 3594 32.9143 96 0.5356

Overall 1.2251 17.9876 3990563 82.2263 97650 0.7769
Nt 1.2944 5.8326 9112 22.7241 408 0.7839
Nl 1.4678 4.6161 6383 26.3352 112 0.5455
Nh 1.1111 6.5833 13816 17.6686 384 0.9005
NA 1.4001 4.7144 6152 27.8652 96 0.6148
NB 1.3675 4.3056 3886 30.9850 88 0.5198
NC 1.1887 6.2421 7341 22.7692 256 0.8825

Table 2. Results obtained by our approach during the testing phase

serve: (i) a very moderate increase of LN and TN , along with a very moderate
decrease of CN , PN , SN and QN for the overall network and for the networks
Nh and NA (resp., Nl and NB). This reveals a second weakness of our approach,
which shows a difficulty to find a single anomaly. Indeed, in this case, it found
a slight change in the dashboard parameters for both the whole network and
the involved subnetworks. This is mainly due to the purpose of our approach,
which does not aim at performing anomaly detection in one sensor (actually, a
long list of approaches carrying out this task - e.g., [8, 12, 13, 15] - already exists)
but, instead, it aims at detecting the consequences, on the whole network and
its subnetworks, of anomalies involving more (heterogeneous) sensors installed
in different locations. In fact, in this case, the interaction of these anomalies
in the network could be extremely variegate and could depend on the number,
the kind and the location of perturbed sensors, so that their detection, along
with the detection of their effects, becomes extremely difficult and justifies the
employment of quite time-expensive approaches like ours. As for this issue, the
results described in this section allow us to conclude that our approach reaches
the objectives for which it was designed.

4 Conclusion

In this paper, we have presented a new approach to analyzing WSNs, which
considers network organization as a whole; this shifts the focus of the analysis
from single sensors to the whole network and its subnetworks. Our approach
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Network LN CN PN TN QN SN
Overall 1.1435 21.5534 5580928 70.0000 114264 0.8534
Nt 1.0712 6.3159 11432 18.2221 384 0.8613
Nl 1.0572 6.4354 11202 18.6667 384 0.8564
Nh 1.2578 4.5673 4564 22.2124 144 0.8123
NA 1.2235 5.1843 6006 28.3673 200 0.7034
NB 1.2351 5.4992 8842 27.4332 224 0.6982
NC 1.1833 5.3556 7828 24.7347 248 0.7792

Overall 1.2199 19.3747 3948573 80.3252 97650 0.7856
Nt 1.2456 5.6658 8562 21.9383 388 0.7467
Nl 1.6100 3.5039 5987 28.2392 192 0.5971
Nh 1.0877 6.4837 12527 17.3877 512 0.8672
NA 1.2292 4.5948 7873 27.223 228 0.6823
NB 1.2334 5.1229 7367 26.2391 228 0.6891
NC 1.2921 4.6578 3834 32.2320 120 0.5012

Overall 1.1235 21.9987 3977283 74.5673 231872 0.8223
Nt 1.1312 6.2989 12345 21.3939 512 0.8323
Nl 1.1433 6.5643 12234 20.3332 512 0.8340
Nh 1.4872 3.9440 3542 38.9412 120 0.7795
NA 1.8342 2.2338 1987 35.1843 96 0.4032
NB 1.2151 4.4738 6932 25.6230 224 0.5820
NC 1.1933 6.0872 8239 23.3235 284 0.7780

Overall 1.1228 21.3789 6184736 67.3233 131872 0.8534
Nt 1.0613 6.4599 12341 17.3939 592 0.8613
Nl 1.0732 6.8865 12854 16.3452 592 0.8564
Nh 1.1640 5.6534 9532 20.9482 288 0.8123
NA 1.2132 5.1928 6987 26.1212 288 0.7034
NB 1.1951 5.4738 9928 24.7210 320 0.6982
NC 1.19445 5.5872 8239 23.3235 320 0.7792

Overall 1.1289 21.8729 6857326 67.3252 131662 0.8556
Nt 1.0782 6.7654 12662 17.2352 592 0.8467
Nl 1.1728 5.9987 5987 20.4568 288 0.8023
Nh 1.0654 6.2356 12277 16.4555 592 0.8553
NA 1.1892 5.6457 9854 25.3356 320 0.7061
NB 1.2234 5.0101 5346 26.4564 288 0.7072
NC 1.1921 5.5482 8899 23.2845 284 0.7843

Table 3. Results obtained by our approach during the examination of some situations
of interest

is based on network connectivity measures that, overall, contribute to a rich
dashboard, which allows the effective detection of perturbations in WSNs. Our
model also allows the network to be sliced in different subnetworks, supporting
the investigation of this phenomenon under different perspectives, as well as a
better characterization of perceived perturbations. Our experimental campaign
confirms the effectiveness of our approach. In the future, we plan to remove the
current weaknesses of our approach, as evidenced by our experiments. First, we
aim at allowing our approach to distinguish perturbations caused by an increase
or a decrease of a physical quantity. Then, we plan to integrate our approach with
the ones detecting anomalies in single sensors. The ultimate goal is to construct
an effective framework, which can detect anomalies on single sensors and can
investigate their consequences on the whole network and its subnetworks, along
with their resilience to sensor malfunctions.
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