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Abstract—This paper proposes a network analysis-based ap-
proach to detecting and characterizing ictal states in patients with
Childhood Absence Epilepsy. Our approach defines and uses some
suitable data structures, consisting of ad-hoc complex networks
and subnetworks, and a new network analysis-based parameter,
called connection coefficient. The examination of the values of this
parameter on the adopted data structures allows our approach to
reach its objectives. Obtained results are extremely encouraging
and stimulate the extension of our approach in several directions.
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I. INTRODUCTION

Nearly 1% of the world population is affected by epilepsy,
a neurological disorder characterized by recurrent seizures.
Epileptic seizures are still considered unpredictable, despite
the huge efforts spent in recent years by scientific community
to develop predictive algorithms. These are mainly based on
electroencephalography, which consists in recording the scalp
potentials produced by cortical electrical activity. Nearly 66%
of patients can be successfully treated with anti-epileptic drugs,
which have remarkable side effects, whereas nearly 8% of
the drug-untractable patients are treated with surgery, which
is high-invasive and high-risk. There is no way to treat the
remaining 26% of patients.

In this paper, the attention is focused on Childhood Ab-
sence Epilepsy (CAE), an idiopathic generalized epileptic dis-
order [1], [2] characterized by recurrent “absence seizures” that
cause disruption of awareness and are often associated with
staring. Subjects experiencing absence seizures must undergo
electroencephalography, which is a totally non-invasive and
comfortable examination, consisting in recording the cortical
electrical activity by means of scalp electrodes that are wired
to an acquisition system, connected to a computer.

The electroencephalography acquisition can last from min-
utes to hours, depending on the number of recorded seizures
and of the specific goal of the examination. In order to evaluate
electroencephalograms (EEGs), a neurologist manually scrolls
them, for detecting and inspecting every possible ictal state

(seizure) or abnormality in the inter-ictal (seizure-free) activity.
However, manual review is a time-consuming, inefficient and
subjective procedure.

To expedite it and to facilitate the diagnosis, worldwide
researchers are working to automatically mark the critical
events occurring in an EEG, as well as to extract meaningful
features from EEG signals, which can help a neurologist to
make a diagnosis, to understand the pathology and, therefore,
to optimize the treatment.

So far, many methodologies were proposed in the literature
for the analysis of EEGs registering absence seizures. Per-
mutation Entropy (PE), a symbolic complexity measure, was
introduced in [3] and applied in [4] to analyze epileptic EEGs.
Authors of [4] used PE to discriminate the different phases of
epileptic activity in intracranial EEG time series, recorded from
three intractable patients. In [5], PE was tested as a possible
predictor of absence seizures in Genetic Absence Epilepsy Rats
from Strasbourg (GAERS). PE outperformed Sample Entropy
(SE) and detected the pre-ictal state in 169 out of 314 seizures
from 28 rats, and the average anticipation time was 4.9s. In [6],
the authors exploited complexity analysis to detect vigilance
changes in epileptic patients. In [7], Multiscale Permutation
Entropy (MPE) was proposed to analyze human EEG signals
at different absence seizure states. MPE, used in conjunction
with Linear Discriminant Analysis (LDA), achieved a 90.6%
sensitivity and exhibited a reduction of MPE levels from the
inter-ictal state to the ictal one. In [8], the authors proposed
Multi-Scale K-means (MSK-means) unsupervised learning to
classify epileptic EEG signals and detect epileptic areas. In
order to analyze the dynamics of EEG time series, while
taking their mutual spatial dependence into account, a spatial-
temporal analysis of epileptic EEGs was proposed in [9], [10],
[11]. Due to the ability of PE in capturing the dynamics
of EEGs registering absence seizures, a PE-based spatial-
temporal analysis was proposed in [12], [13], [14]. Here,
the authors showed that the frontal temporal lobes exhibited
relatively high PE levels, whereas the parieto-occipital areas
appeared associated with relatively low PE values. However,
being PE univariate, it is only able to quantify the randomness
of single EEG channels independently; instead, it is not able to
quantify the interaction between channels. To investigate this



last issue, the necessity arises of bivariate descriptors, which
can provide an estimation of the interaction between channels.

Among this last kind of descriptors, coherence is one
of the most promising [15]. As a matter of fact, in [16],
Partial Directed Coherence (PDC) was employed to quantify
the strength and the direction of the interactions between
the electrodes during the inter-ictal (i.e., seizure free) EEG
segments in CAE patients. PDC revealed an abnormal cortical
network activity during the inter-ictal state, in particular in the
alpha band. In [17], the authors proposed a method consisting
of a three level wavelet decomposition, a coherence estimation
and a phase synchrony feature extraction to classify ictal vs
inter-ictal EEG segments.

Since absence ictal states appear associated with an in-
creased EEG synchronization, coherence revealed a powerful
descriptor of absence seizure EEG signals [16], [15]. In
[15], the authors constructed EEG networks, based on the
estimation of coherence and Synchronization Likelihood (SL),
to investigate the network changes associated with seizure
onset. Ictal EEG segments were characterized by an increased
synchronization and a more ordered network topology. In
[18], the authors applied PDC-based weighted directed graph
analysis to EEGs of patients with absence seizures to per-
form a classification of nodes (electrodes) according to their
source/sink nature.

This paper aims at providing a contribution in this setting.
In fact, it studies the temporal variation of the synchronization
between EEG signals to automatically discriminate ictal vs
inter-ictal states, while keeping the global view of how these
temporal variations involve the different areas of the cortex.
For this purpose, an EEG-based complex network model was
developed, where nodes represent electrodes (i.e., cortical
areas) and the weight of edges represents the complementary of
the coherence value between the EEG signals, recorded at the
electrodes associated with the corresponding nodes. A complex
network-analysis was carried out to find possible changes
in the network features driven by the onset of epileptiform
activity. By studying the behavior of the network and its
subnetworks over time, a global evaluation of the behavior
of the cortex is possible, and the presence of seizures can be
automatically detected.

The proposed approach differs significantly from previous
studies related to EEGs with absence seizure. To our best
knowledge, this is the first time that social network analysis
is applied to the EEG of patients with absence seizures.
Furthermore, in previous studies, based on the use of complex
networks for the detection of absence ictal states, for every
patient, only one seizure was manually selected [15], whereas,
in the present work, all the recorded seizures are considered,
and an overall accuracy is achieved for every patient. In our
approach, the whole EEG recording is segmented into overlap-
ping windows and, then, it is processed window by window,
so that an overall and smooth analysis of it is achieved.
Moreover, no artifact rejection preprocessing was carried out in
order to introduce no discontinuity in the dataset and to track
the dynamics of the EEG time series continuously. Further-
more, a novel complex network parameter, called connection
coefficient, is introduced. It proved particularly adequate to
quantify the connection level of a network. The present paper
is mainly methodological as it introduces a novel approach for

the analysis of EEGs with absence seizures. However, since
preliminary results, achieved over a dataset of 9 CAE patients,
are very encouraging, the proposed method will be tested on
a larger dataset in the near future.

This paper is organized as follows: in Section II, we
describe available data and define coherence. In Section III,
we introduce some support data structures employed by our
approach. Section IV represents the core of this paper, because
it illustrates our approach. Finally, in Section V, we draw our
conclusions and give a look at some future developments of
this research.

II. AVAILABLE DATA

A. EEG recording and preprocessing

A dataset including 9 EEG recordings from patients diag-
nosed with CAE was studied. The children mean age was 7.44
years, with a standard deviation of 1.67 years. The average
duration of EEG recordings was 25.68 mins.

The dataset was provided by UNEEGTM medical A/S
(Lynge, Denmark) within a research cooperation agreement.
The EEG montage was set according to the international
10/20 system. EEGs were recorded by means of Stellate
Harmonie (Stellate Systems, Inc., Montreal, Quebec, Canada)
and Cadwell Easy II (Cadwell Laboratories, Inc., Kennewick,
WA) systems. EEG traces were reviewed by a board-certified
epileptologist, who marked all the paroxysms.

The method flowchart can be described as follows: 1) the
n-channels EEG is recorded, band-pass filtered between 0.5
and 32 Hz (because absence seizure activity mainly lies in this
range [19]), digitized with a sampling rate of 200 Hz and stored
on a computer; 2) the EEG is segmented into M overlapping
windows (with 2s width and 1s overlap) and analyzed window
by window; 3) given the kth window EEG(k) (where k =
1, . . . ,M ), the complementary 1 − Cvi,vj of the coherence
between every pair of electrodes (vi, vj) is estimated, and used
as the weight of the edge between the nodes corresponding to
vi and vj .

The width of the overlapping windows was set at 2s
because the paroxysms longer than 2s are those considered
to be clinically relevant. The 1s overlap ensures that the EEG
is processed smoothly and that there is no abrupt variation
in estimated descriptors. EEG processing was implemented
and carried out in MATLAB R2016b (The MathWorks, Inc.,
Natick, MA, USA).

B. Coherence estimation

The magnitude squared coherence between two signals vi
and vj depends on the frequency f and is defined as:

Cvi,vj (f) =
|Pvi,vj

(f)|2

Pvi,vi
(f)Pvj,vj

(f)

where Pvi,vi(f) and Pvj ,vj (f) are the Power Spectral Densities
(PSD) of vi and vj , respectively, whereas Pvi,vj (f) represents
the cross power spectral density between vi and vj . Coherence
Cvi,vj is a measure of synchronization between vi and vj and is
bounded between 0 and 1. In this work, it was estimated using
the method of Welch’s averaged, modified periodogram [20].



Fig. 1. Average edge weight distribution in inter-ictal states

The kth EEG window under analysis, and the estimated values
of coherence Ck

vi,vj
(f) for every frequency f , were averaged

over the frequencies of the range under consideration (fL=0.5
Hz - fU=32 Hz):

C
k

vi,vj = 1
fU−fL

∫ fU
fL

Ck
vi,vj (f)df

Therefore, for every analyzed window EEG(k), and for
every pair of electrodes (vi, vj), an average value of coherence
C

k

vi,vj is computed.

III. SUPPORT DATA STRUCTURES

Let eeg be a generic EEG. Starting from it, a network (that
we call brain network) N = ⟨V,E⟩ can be defined.

Here, V is the set of nodes of N . Each node vi ∈ V
corresponds to an electrode. In our EEGs, electrodes were
applied by following the 10-20 system and |V | = 19.

E is the set of edges of N . Each edge eij connects nodes vi
and vj . It can be represented as eij = (vi, vj , wij). Here, wij

is a measure of “distance” between vi and vj . It is an indicator
of the disconnection level of vi and vj . Indeed, each measure
representing this feature could be adopted in our model. In
the experiments presented in this paper, we employed the
complementary of the coherence value between vi and vj (i.e.,
we set wij = 1− Cvi,vj ).

A preliminary investigation performed in our research con-
sisted of determining the edge weight distribution (averaged on
all available patients) in ictal, pre-ictal, post-ictal and inter-ictal
states, even if, in this paper, our focus is on ictal and inter-ictal
states. In carrying out this task, we separated the range of edge
weights (which, we recall, is [0, 1]) in ten intervals of the same
length. The obtained distribution for inter-ictal and ictal states
is reported in Figures 1 and 2. From a deeper evaluation of
these distributions, we can observe that there are some intervals
more relevant than others for distinguishing the two states. As
a consequence, to better detect and characterize ictal states, it is
reasonable to consider some ad-hoc subnetworks, each taking
only the edges belonging to specific intervals into account.

In particular, we defined the following subnetworks: N b =
⟨V,Eb⟩, Nm = ⟨V,Em⟩, N r = ⟨V,Er⟩, N g = ⟨V,Eg⟩,
N y = ⟨V,Ey⟩, N br = ⟨V,Ebr⟩. We used a color name to
provide a more mnemonic way of distinguishing sub-networks.

Fig. 2. Average edge weight distribution in ictal states

Thus, the superscripts b,m, r, g, y, br stand for blue, magenta,
red, green, yellow and brown, respectively.

Given that the set of nodes is the same for all subnetworks,
we focus on defining only the set of edges of each of them:

Eb = {eij | eij ∈ E, 0.9 < wij ≤ 1},
Em = {eij | eij ∈ E, 0.8 < wij ≤ 0.9},
Er = {eij | eij ∈ E, 0.7 < wij ≤ 0.8},
Eg = {eij | eij ∈ E, 0.6 < wij ≤ 0.7},
Ey = {eij | eij ∈ E, 0.5 < wij ≤ 0.6},
Ebr = {eij | eij ∈ E, 0.3 < wij ≤ 0.4}.

Finally, we constructed two further subnetworks. The for-
mer was obtained by merging blue, magenta, red, green and
yellow subnetworks (we called “rainbow” this network). The
latter was constructed by considering all the edges of the
original network not belonging to the rainbow one (we called
“black” this network). Formally speaking, the two networks
are defined as: N rbw = ⟨V,Erbw⟩,N blk = ⟨V,Eblk⟩, where:

Erbw = {eij | eij ∈ E, 0.5 < wij ≤ 1},
Eblk = {eij | eij ∈ E, 0 ≤ wij ≤ 0.5}.

Since each EEG is in the form of a time series, it could be
useful to introduce the concept of mean network. Thus, given
q networks N1 = ⟨V,E1⟩, N2 = ⟨V,E2⟩, · · · , Nq = ⟨V,Eq⟩,
we define the mean network N , corresponding to them, as:
N = ⟨V,E⟩, where:

E = {(vi, vj , wij) | eijk = (vi, vj , wijk) ∈ Ek, 1 ≤ k ≤

q, wij =

∑q
k=1 wijk

q
}.

Observe that 0 ≤ wij ≤ 1.

IV. DETECTION AND CHARACTERIZATION OF ICTAL
STATES

A. Connection coefficient

As pointed out before, one of the main features to investi-
gate for the detection of ictal states is the connection level of
the brain areas. In network analysis, one of the most powerful
tools for investigating the connection level of a network is the
concept of clique [21]. Starting from cliques, it is possible
to define a quantitative coefficient, which we call connection
coefficient, capable of measuring the connectivity level of a
network associated with an EEG. This coefficient takes the
following considerations into account: (i) both the dimension



and the number of cliques are important as connectivity
indicators; (ii) the concept of clique is intrinsically exponential;
in other words, a clique of dimension n + 1 is exponentially
more complex than a clique of dimension n. We are now able
to define the connection coefficient ccN of a network N . In
particular, let C be the set of the cliques of N ; let Ck be the
set of cliques of dimension k of N ; finally, let |Ck| be the
cardinality (i.e., the number of cliques) of Ck. Then, ccN is
defined as:

ccN =
∑|V |

k=1 |Ck| · 2k

B. Detecting ictal states

Detecting ictal states is a very delicate and time consuming
task for a neurologist, who have to analyze a whole EEG. Our
effort, in this case, was to compute, on a time-slot base, the
value of the connection coefficient for an EEG. And so, for
each patient and each time-slot, we computed the value of the
connection coefficient of the brain network associated with the
EEG at that time-slot.

Indeed, in order to better evidence this phenomenon, we
considered the brain subnetworks N rbw and N blk, defined in
Section IV. We recall that N rbw considers the five intervals
of edge distribution characterized by the heaviest weights,
whereas N blk encompasses the other ones. As a consequence,
since edge weights represent distances, on the basis of the
results of [15], we can expect that, in presence of an ictal
state, the connection coefficient associated with N rbw presents
a minimum, whereas the one corresponding to N blk shows a
maximum. This is explained by the fact that, during the ictal
states, the weights of the edges tend to decrease and, therefore,
several edges disappear from N rbw and appear in N blk. For
the sake of brevity, we will only look at the results obtained
for Patient 18 as an example, but we obtained very similar
results for all of the other patients.

In Table I, we report data about figures specified by an
expert neurologist when she examined the whole EEG of
Patient 18. The physician identified 8 seizures, which took
place into the time-slots specified in this table.

TABLE I. TABLE PRODUCED BY A NEUROLOGIST ABOUT START AND
END TIME-SLOTS FOR EACH SEIZURE OF PATIENT 18

Seizure id Start time-slot End time-slot
1 4 26
2 120 122
3 165 205
4 306 332
5 449 451
6 470 496
7 642 659
8 891 913

We use this table as a starting point and a benchmark of
accuracy for the detection of ictal states performed by our
approach.

In Figure 3, we plotted the values of the connection
coefficient (y axis) for each time-slots (x axis) for Patient 18
and for N rbw, whereas, in Figure 4, we represented the values
of the same coefficient for the same patient, but for N blk.

Clearly, in Figure 3 it is straightforward to observe that
there are some time-slots in which connection coefficient is

Fig. 3. Connection coefficient for the network N rbw of Patient 18

Fig. 4. Connection coefficient for the network N blk of Patient 18

several orders of magnitude less than others. The important
result is that those time-slots are exactly the ones that the
neurologist spotted as ictal states. For instance, in Figures 5
and 6, we show more closely the part of the plot of Figure
3 corresponding to the first and the eighth seizures, in such a
way as to allow the reader to more appreciate the differences,
in terms of magnitude, of the value of connection coefficient
in the involved states.

Fig. 5. Zoomed plot of the value of connection coefficient of Figure 3 - first
seizure

Thus, without having to manually analyze the whole EEG
for a patient, thanks to this coefficient, we can easily distin-
guish ictal states from the others.

In order to provide a quantitative evaluation of the perfor-
mance of our approach, we computed its sensitivity, specificity
and precision for each patient and, then, for the set of seizures
of all patients, taken as a whole. Obtained results are reported
in Table II. Taking into account that, in this application



Fig. 6. Zoomed plot of the value of connection coefficient of Figure 3 -
eighth seizure

context, sensitivity is more important than specificity, we have
considered the union of the seizures detected by using N rbw

and N blk.

TABLE II. SENSITIVITY, SPECIFICITY AND PRECISION OF OUR
APPROACH

Patient Sensitivity Specificity Precision
16 0.9032 0.8400 0.7272
18 1.0000 0.9291 0.9961
23 0.9629 0.9882 0.9167
29 1.0000 0.9483 0.9473
31 1.0000 0.9287 0.9438
32 1.0000 0.9356 0.8644
39 1.0000 0.8642 0.7400
47 1.0000 0.9610 0.9917
57 1.0000 0.9012 0.4375

Overall 0.9704 0.9169 0.6482

From the analysis of this table, we can see that our
approach provides excellent results, especially if we look at
sensitivity. However, also specificity and precision are very
good. Clearly, we are conscious that the number of examined
patients is small. However, as previously pointed out, due to
the encouraging results obtained, and due the methodological
nature of our paper, we believe the present research can
contribute to motivate clinical centers to engage an experimen-
tation of our approach with a much higher number of patients.

C. Characterizing ictal states

In order to understand and characterize what happens
during ictal states, we analyzed the subnetworks defined in
Section III. For this purpose, we computed a mean network
for each inter-ictal time-slot, up to 40 time slots before the
seizures, and we mediated those networks among all patients.
We did the same task for ictal time-slots, up to 8 time-slots
after the start of a seizure, until the center-ictal time-slot.

The subnetworks we used were the blue one N b, the
magenta one Nm, the red one N r, the green one N g, the
yellow one N y and the brown one N br. We computed the
values of connection coefficient for each colored subnetwork
of the mean networks previously derived. Obtained results are
plotted in Figure 7. Here, we show the average connection
coefficient of some colored networks for 40 time-slots of inter-
ictal state and 8 time-slots of ictal state.

As we can see from this figure, during the inter-ictal state,
the values of connection coefficient do not deeply change until

the first time-slot before ictal. At this time, we can see that the
values of connection coefficient increase for yellow and green
subnetworks and become higher than the corresponding ones
of magenta and blue subnetworks. An increase of the values of
connection coefficient for yellow and green subnetworks, cou-
pled with a strong decrease of the values of this coefficient for
blue and magenta subnetworks, implies that, during ictal states,
both the number and the dimension of the cliques in yellow
and green subnetworks increase, whereas the corresponding
ones in blue and magenta subnetworks decrease. In turn, this
implies that a certain number of edges migrate from magenta
and blue subnetworks to green and yellow ones. Now, recall
that yellow and green edges have a weight between 0.5 and 0.7,
whereas magenta and blue edges have a weight between 0.8
and 1. As a consequence, the edge migration described above
implies that a hyper-synchronization of brain areas happens
during ictal states.

This characterization result for ictal state is particularly
interesting because we were able to confirm, through a network
analysis-based approach, what several authors had found in
the past, through completely different approaches (see, for
instance, [15]), namely that ictal states are characterized by
hyper-synchronization, which can be automatically detected.
With reference to this feature, it is worth emphasizing that we
evaluated the sensitivity and the specificity of the proposed
approach over the whole EEG recording, and not over selected
epochs, which makes our approach suitable for possible real-
time applications. Interestingly, in our tests, no artifactual
epoch was discarded, in order to track the behavior of the EEG
continuously and to evaluate the sensitivity, specificity and
precision of our approach in real conditions, when noise and
artifacts may be present. Furthermore, the usage of complex
networks allows the investigation of the interactions between
the different areas of the brain in absence and in presence of a
seizure, which we aim at deepening in the future. Finally, we
point out that, at the moment, the system can be used off-line
to mark the seizures automatically and allow the neurologist
to skip the manual EEG review, which is extremely time
consuming. However, we plan to optimize it in the future in
such a way as to allow for a continuous, real time, long-term
monitoring.

V. CONCLUSION

In this paper, we have presented a network analysis-based
approach to detecting and characterizing ictal states in patients
with CAE. Our approach associates one or more complex
networks and subnetworks with each EEG at disposal. To reach
its objective, it introduces a new parameter, called connection
coefficient, and evaluates this parameter on each available
network and some ad-hoc subnetworks, defined in such a way
as to maximally evidence the differences between inter-ictal
and ictal states. Obtained results are extremely encouraging,
as shown in Sections IV-B and IV-C.

In the future, we plan to extend our approach in several
directions. First, we would like to make it capable of detecting
and characterizing pre-ictal states, which is a much more
complex but, at the same time, extremely useful task. Then, we
plan to extend our approach to investigate the mechanisms of
area recruitment that occur in the inter-ictal and pre-ictal states.
Furthermore, we plan to construct a dashboard of parameters



Fig. 7. Connection Coefficient for mean networks during pre-ictal and ictal states

(instead of the only connection coefficient) to adopt for the
detection and the characterization of ictal and pre-ictal states.
Last, but not the least, we plan to make our approach able to
handle other forms of epilepsy.

ACKNOWLEDGEMENTS

Nadia Mammone’s work was funded by the Italian Ministry
of Health, Project Code GR-2011-02351397. This work was
partially supported by Aubay Italia S.p.A.

The EEG data and the medical feedback were kindly
provided by T. W. Kjaer (Center of Neurophysiology, Depart-
ment of Neurology, at Zealand University Hospital, Roskilde,
Denmark) and J. Duun-Henriksen (UNEEGTM medical A/S,
Nymollevej 6, DK-3540, Lynge, Denmark).

REFERENCES

[1] J. Duun-Henriksen, R. Madsen, L. Remvig, C. Thomsen, H. Sorensen,
and T. Kjaer, “Automatic detection of childhood absence epilepsy
seizures: toward a monitoring device,” Pediatric Neurology, vol. 46,
no. 5, pp. 287–292, 2012.

[2] J. Duun-Henriksen, T. Kjaer, R. Madsen, L. Remvig, C. Thomsen,
and H. Sorensen, “Channel selection for automatic seizure detection,”
Clinical Neurophysiology, vol. 123, no. 1, pp. 84–92, 2012.

[3] C. Bandt and B. Pompe, “Permutation entropy: A natural complexity
measure for time series,” Physical review letters, vol. 88 (17), p. 174102,
2002.

[4] Y. Cao, W. Tung, J. Gao, V. Protopopescu, and L. Hively, “Detecting
dynamical changes in time series using the permutation entropy,”
Physical Review E, vol. 70, p. 046217, 2004.

[5] X. Li, G. Ouyang, and A. Douglas, “Predictability analysis of absence
seizures with permutation entropy,” Epilepsy Research, vol. 77, pp. 70–
74, 2007.

[6] A. Bruzzo, B. Gesierich, M. Santi, C. Tassinari, N. Birbaumer, and
G. Rubboli, “Permutation entropy to detect vigilance changes and
preictal states from scalp EEG in epileptic patients. a preliminary
study,” Neurological Science, vol. 29(1), pp. 3–9, 2008.

[7] G. Ouyang, J. Li, X. Liu, and X. Li, “Dynamic characteristics of
absence EEG recordings with multiscale permutation entropy analysis,”
Epilepsy Research, vol. 104, no. 3, pp. 246–252, 2013.

[8] G. Zhu, Y. Li, P. Wen, and S. Wang, “Classifying epileptic EEG signals
with delay permutation entropy and multi-scale k-means,” Advances in
Experimental Medicine and Biology, vol. 823, pp. 143–157, 2015.

[9] N. Mammone, J. Principe, F. Morabito, D. Shiau, and J. Sackellares,
“Visualization and modelling of STLmax topographic brain activity
maps,” Journal of neuroscience methods, vol. 189, no. 2, pp. 281–294,
2010, Elsevier.

[10] N. Mammone, F. L. Foresta, G. Inuso, F. Morabito, U. Aguglia, and
V. Cianci, “Algorithms and topographic mapping for epileptic seizures
recognition and prediction,” Frontiers in Artificial Intelligence and
Applications, no. 204, pp. 261–270, 2009, IOS Press.

[11] N. Mammone, F. L. Foresta, and F. Morabito, “Discovering network
phenomena in the epileptic electroencephalography through permutation
entropy mapping,” Frontiers in Artificial Intelligence and Applications,
vol. Neural Nets WIRN10, pp. 260–269, 2011, IOS Press.

[12] N. Mammone and F. Morabito, “Analysis of absence seizure eeg via
permutation entropy spatio-temporal clustering,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN 2011), San
Jose, CA, USA, 2011, pp. 1417–1422, IEEE.

[13] N. Mammone, J. Henriksen, T. Kjaer, and F. Morabito, “Differenti-
ating interictal and ictal states in childhood absence epilepsy through
Permutation Renyi Entropy,” Entropy, vol. 17, no. 7, pp. 4627–4643,
2015.

[14] N. Mammone, J. Duun-Henriksen, T. Kjaer, M. Campolo, F. L. Foresta,
and F. Morabito, “Quantifying the complexity of epileptic eeg,” in Smart
Innovation, Systems and Technologies: Advances in Neural Networks,
2016, pp. 223–232, Springer.

[15] S. Ponten, L. Douw, F. Bartolomei, J. Reijneveld, and C. Stam, “In-
dications for network regularization during absence seizures: weighted
and unweighted graph theoretical analyses,” Experimental Neurology,
vol. 217, no. 1, pp. 197–204, 2009, Elsevier.

[16] F. Rotondi, S. Franceschetti, G. Avanzini, and F. Panzica, “Altered EEG
resting-state effective connectivity in drug-naı̈ve childhood absence
epilepsy,” Clinical Neurophysiology, vol. 127, no. 2, pp. 1130–1137,
2016.

[17] D. Ravish, S. Devi, and S. G. S.G. Krishnamoorthy, “Wavelet analysis of
EEG for seizure detection: Coherence and phase synchrony estimation.”
Biomedical Research, 2015, Biomedical Research.

[18] A. Rodrigues, B. Machado, L. Caboclo, A. Fujita, L. Baccaia, and
K. Sameshima, “Source and sink nodes in absence seizures,” in Pro-
ceedings of the Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBS’16), Orlando, FL, USA,
2016, pp. 2814–2817, IEEE Society.

[19] J. Gotman, J. Ives, and P. Gloor, “Frequency content of EEG and
EMG at seizure onset: possibility of removal of textscEMG artefact by
digital filtering,” Electroencephalography and clinical neurophysiology,
vol. 52, no. 6, pp. 626–639, 1981, Elsevier.

[20] P. Welch, “The Use of Fast Fourier Transform for the Estimation of
Power Spectra: A Method Based on Time Averaging Over Short, Modi-
fied Periodograms,” IEEE Transactions on Audio and Electroacoustics,
vol. 15, no. 2, pp. 70–73, 1967.

[21] M.Tsvetovat and A. Kouznetsov, Social Network Analysis for Startups:
Finding connections on the social web, 2011, o’Reilly Media, Inc.


