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Abstract

Traversing, searching and sampling approaches have been deeply investigated in graph theory

and applied in a large variety of research fields. However, in bioinformatics and biomedicine,

sampling complex networks is a new and little investigated task. For instance, it is used to classify

knowledge for creating semantic maps, summarizations and multi-label classifications, or for search

motifs. In this chapter, first we introduce a formalism to represent complex networks. Then, we

provide both three taxonomies of network sampling approaches and a brief overview of each of

them. After this, we present a comparison of these approaches. Finally, we draw some conclusions

and take a look at the future.
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1 Introduction

Differently from other data analytics tasks, Network Analysis (NA) [15, 27, 28, 6] focuses on relation-

ships existing between actors, instead of on actors.

In Network Analysis, one of the most important topics, representing the core for addressing several

issues, is network search or network traversal. This problem refers to the task of visiting each node of

the network. To carry out this activity, two main families of strategies are Breadth First Search (BFS,

for short) and Depth First Search (DFS, for short). The former visits the siblings of the current node

before visiting its children, whereas the latter visits the children of the current node before visiting its

siblings.

When the networks being investigated are extremely large, and the computational effort necessary

to perform the desired analyses is excessive, it could become impossible to operate on all its nodes and
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edges. In this case, one of the most common approaches is sampling. Indeed, sampling approaches

allow the extraction of knowledge about a network by investigating only a part of the network itself.

Clearly, the way the sample is chosen becomes crucial for extracting knowledge without errors

or, at least, for minimizing the magnitude of errors. The problem of sampling from large graphs is

discussed in [20]. Here, the authors investigate: (i) which sampling approaches must be used; (ii) how

much the sampled graph can be reduced w.r.t. the original graph; (iii) how the measurements made

on a sample can be scaled up to get estimates for the corresponding (generally much larger) graph.

The problem of obtaining realistic samples with an as small as possible dimension is also described in

[16]. Here, the authors show that some of the analyzed methods can maintain the key properties of

the original graph, even if the sample dimension is about 30% smaller than the original graph.

Sampling has been extensively studied in the literature. For instance, in [10], the authors propose

an approach that, given a communication network, determines the most important nodes and, then,

links them each other. Instead, the authors of [26] propose a technique, based on both sampling and

the randomized notion of focus, to allow the visualization of very large networks. An analysis of the

statistical properties of a sampled network can be found in [18]. In [1], the authors use the social

network Cyworld to analyze the main features of the snowball sampling approach.

Other approaches, such as [30, 7, 17, 11], focus mainly on sampling cost. Specifically, [30] analyzes

how rapidly a crawler can reach nodes and links; [7] proposes a framework of parallel crawlers based

on Breadth First Search (BFS); [17] investigates the impact of different sampling techniques on the

computation of the average node degree of a network; [11] studies several crawling strategies and

determines the sampling quality guaranteed by them and the computation effort they require. Finally,

in [5, 4], the authors describe how the crawling problem and its solutions change when passing from a

social networking to a social internetworking scenario (i.e., in a scenario where several social networks

interact each other through bridge nodes).

In bioinformatics and biomedicine, sampling of complex networks is a new and little investigated

task. One of the main issues faced in these two contexts is the rapid growth of the scientific knowledge

presented in the literature. Sampling is mainly used to classify such knowledge. As a consequence,

currently it is a supporting task for performing other activities, and is employed only rarely as the

core approach to addressing issues in this context. For instance, in [8, 25, 13], the authors present

some approaches that employ sampling on the existing literature to create: (i) semantic maps based

on relationships [8]; (ii) summarizations [25]; (iii) multi-label classifications [13].

Sampling is also used to face a specific, yet extremely interesting, research problem, i.e., the

search for motifs in a network. For instance, the authors of [14] propose a new algorithm allowing the

estimation of the subgraph concentration at runtime; furthermore, in [3], the authors employ sampling

to generate a probabilistic model of local protein structure; finally, in [2, 29], sampling is used to search

motifs in biological networks.

In biomedical research, the most employed sampling approach is undoubtedly Random Walk (RW)

and its variants. For instance, RW is adopted in [22, 24] to evaluate the relationships between proteins,

genes and diseases. In [19], the authors employ RW to investigate and plot DNA sequences. Finally,

in [23, 21, 9], RW is used to discover functional models and to infer pathway activity. In these latter

cases, RW allows users to capture the information embedded in protein structure and to represent it

in the resulting graph.
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This chapter aims at providing an exhaustive overview of the existing algorithms for traversing,

searching and sampling networks. It is organized as follows. In Section 2, we illustrate some prelim-

inary concepts and introduce the formalism adopted throughout this chapter. In Section 3, first we

propose three taxonomies for sampling approaches and, then, we provide a brief description of each

approach. In Section 4, we present a comparison of sampling approaches based on property preserva-

tion and network property estimation. Finally, in Section 5, we draw our conclusions and have a look

at future possible developments of this research issue.

2 Fundamentals

A network N = 〈V,E〉 consists of a set V of nodes and a set E of edges. We use n and m to denote

|V | and |E|. Each edge, eij = (vi, vj), connects the nodes vi and vj . Edges can be either directed

(when they can be traversed only in one direction) or undirected (when they can be traversed in both

directions). Furthermore, networks can be weighted or unweighted. If a network is weighted, the edge

can be represented as (vi, vj , wij), where wij denotes the weight of the edges. On the basis of the

reference context, this weight could represent strength, distance, similarity, etc.

Let vi be a node of V . The set of edges incident to vi is defined as ι(vi) = {(vj , vi, wji)|(vj , vi, wji) ∈
E}. The neighborhood, ν(vi), is defined as ν(vi) = {vj |(vi, vj , wij) ∈ E}.

A sampled network Ns = 〈Vs, Es〉 consists of a set Vs ⊆ V of nodes and a set Es ⊆ E of edges such

that Es ⊆ {(vi, vj , wij)|vi ∈ Vs, vj ∈ Vs}. This last condition ensures that the sampled elements form

a valid graph. We use the symbols ns and ms to denote |Vs| and |Es|, respectively. Clearly, ns ≤ n

and ms ≤ m. Each sampling activity has a cost and, often, a maximum budget B can be assigned to

it. B has the same nature as the costs and can be used to cope with them.

3 Searching/traversing and sampling approaches

3.1 A look at searching/traversing approaches

The goal of a network search approach is to explore a network until a given desired target node has

been reached. Instead, the goal of a network traversal approach is to find all the nodes of a network

that can be reached from a given root node. The two main families of network searching/traversing

strategies are Breadth First Search (BFS, for short) and Depth First Search (DFS, for short).

3.1.1 Breadth First Search/Traversal

If BFS is adopted as a network search approach, it begins at the root node and uses a queue as support

data structure. First, it enqueues the root node.

At the generic iteration, it dequeues a node and examines it. If this node is the target one, it

returns the corresponding value. Otherwise, it enqueues the direct child nodes that have not been

visited.

If the queue is empty, it returns a negative value to indicate that the element was not found;

otherwise, it performs the next iteration.
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If BFS is adopted as a network traversal approach, it operates in an analogous way, but it termi-

nates then the whole network has been visited.

The worst case time complexity of BFS is O(|E|+ |V |) as, in this case, every node and every edge

will be explored.

3.1.2 Depth-First Search/Traversal

If DFS is adopted as a network search approach, it begins at the root node and uses a stack as support

data structure. First, it pushes the root node.

At the generic iteration, it pops a node and examines it. If this node is the target one, it returns

the corresponding value. Otherwise, it pushes a direct child node that has not been visited.

If the stack is empty, it returns a negative value to indicate that the element was not found;

otherwise, it performs the next iteration.

If BFS is adopted as a network traversal approach, it operates in an analogous way, but it termi-

nates when the whole network has been visited.

The worst case time complexity of DFS is O(|E|+ |V |) as, in this case, every node is visited only

once and all the edges are crossed once.

3.2 Taxonomies of sampling approaches

There exist several taxonomies of sampling approaches. A first classification considers the sampling

objective. In this case, we can distinguish approaches that: (i) get a representative subset of nodes;

(ii) preserve certain properties of the original network; (iii) generate a random network. For this

chapter, we will give more attention to the second type, i.e., property preservation.

A second taxonomy concerns the type of networks. In this case, we have: (i) Erdos-Renyi Network

(ERN), also known as Random Graph, Exponential Random Graph, Poisson Random Graph, etc.;

(ii) Power-Law Network (PLN), also called Scale-Free Network; (iii) Small-World Network (SMN);

(iv) Fixed Degree Distribution Random Graph (FDDRG), also called “Configuration Model”.

A third taxonomy is based on the adopted sampling techniques. In this case, we can consider:

• Node Sampling (NS).

• Edge Sampling (ES).

• Node Sampling with Neighborhood (NSN).

• Edge Sampling with Contraction (ESC).

• Node Sampling with Contraction (NSC).

• Traversal Based Sampling (TBS). This last is actually a family of techniques. In this case, the

sampler starts with a set of initial nodes (and/or edges) and expands the sample on the basis of

current observations. In this family, we can recognize:

– Breadth First Search (BFS);
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– Depth First Sampling (DFS);

– Random First Sampling (RFS);

– Snowball Sampling (SBS);

– Random Walk (RW);

– Metropolis-Hastings Random Walk (MHRW);

– Random Walk with Escaping (RWE);

– Multiple Independent Random Walkers (MIRW);

– Multi-Dimensional Random Walk (MDRW);

– Forest Fire Sampling (FFS);

– Respondent Driven Sampling (RDS) or Re-Weighted Random Walk (RWRW).

In the following, we use this last taxonomy and we give an overview to all the approaches mentioned

above.

3.3 Description of sampling approaches

3.3.1 Node Sampling (NS)

This approach first selects Vs directly, i.e., uniformly or according to some distribution of V , determined

on the basis of already known information about the nodes. Then, it selects the edges of Es in such

a way that Es = {(vi, vj , wij)|(vi, vj , wij) ∈ E, vi ∈ Vs, vj ∈ Vs}.

3.3.2 Edge Sampling (ES)

This approach first selects Es ⊆ E uniformly at random, or according to some policy. Then, it selects

Vs as Vs = {vi, vj |(vi, vj) ∈ Es}. Alternatively, it can set Vs = V . In this last case, the edge sampling

task reduces to a network sparsification task. As a matter of fact, network sparsification is a more

general task than network sampling. Therefore, the latter can be considered as a specific case of the

former.

3.3.3 Node Sampling with Neighborhood (NSN)

This approach first selects a set V ⊆ V directly, on the basis of available resources, without considering

topological information. Then, it determines Es as Es =
⋃
vi∈V ι(vi) and Vs = {vi, vj |(vi, vj) ∈ Es}.

Finally, it returns Ns = 〈Vs, Es〉 as the sampled network.

3.3.4 Edge Sampling with Contraction (ESC)

This approach is based on the concept of contraction. We recall that the contraction of a pair of nodes

vi and vj produces a network in which the two nodes vi and vj are replaced with a single node vij
such that vij is adjacent to the union of the nodes to which vi and vj were originally adjacent. If vi
and vj are connected by an edge, this edge is simply removed.

5



ESC is an iterative process. At each step, it samples one edge (vi, vj , wij) ∈ E and performs the

following tasks: (i) it substitutes nodes vi and vj with only one node vij representing both of them;

(ii) it substitutes each edge involving vi or vj with an edge involving vij ; (iii) it substitutes all the

possible edges involving vij and the same node vk with a unique edge involving the same nodes, whose

weight is suitably determined from the weights of the merged edges, depending on the application

context.

3.3.5 Node Sampling with Contraction (NSC)

This is an iterative process. At stage l, it samples one node vl and contracts vl and the nodes of ν(vl)

into one node. In carrying out this task, it suitably removes or modifies the corresponding edges. It

is possible to show that NSC is a more constrained version of ESC.

3.3.6 Breadth First Sampling (BFS), Depth First Sampling (DFS), Random FirstSam-

pling (RFS)

The Breadth First Sampling approach uses a support list L of nodes. As pointed out in Section 3.1,

L is a queue for BFS and a stack for DFS and RFS. Initially, it selects a starting node v0 and sets

L to {v0}, Vs to {v0} and Es to ∅. Then, it repeats the following tasks until to the available budget

B is exhausted: (i) it takes the first element vl from L; (ii) for each vj ∈ ν(vl) such that vj 6∈ Vs and

vj 6∈ L, it adds vj to L; vl is called the “father” of vj and is indicated as f(vj); (iii) it adds vl to Vs;

(iv) it adds the edge (vl, vj) to Es; (v) it subtracts the cost of the current iteration from B.

DFS and RFS differ from BFS only in step (i) above. In fact, in DFS, the last element is selected

from L, whereas, in RFS, a random element is chosen.

3.3.7 Snowball Sampling (SBS)

Snowball Sampling, or Network Sampling, or Chain Referral Sampling, is often used in sociology when

it is necessary to perform an investigation on a hidden population (e.g., alcoholics).

It starts from an initial set V 0 of nodes, which can be obtained randomly or based on the side

knowledge of the hidden population.

At stage l, it first sets the set V l of visited nodes and the set El of visited edges to ∅. Then,

for each node, vl ∈ V l−1, it selects k nodes belonging to the neighborhood, ν(vl), of vl uniformly at

random, or according to some policy, adds them to V l, and adds the edges from vl to each of these

nodes to El. The methodology to perform the selection of the k nodes may depend on the application

context. At the end of stage l, V l = V l −
⋃
j=0..l−1 V

j .

The process is repeated for t stages until the budget B is exhausted.

The final sampled network N = 〈Vs, Es〉 is constructed by setting Vs =
⋃
j=0..t V

j and Es =⋃
j=1..tE

j .

Note that SBS is very similar to BFS. Indeed, the difference is that BFS considers the whole

neighborhood of the current node, whereas SBS considers only k nodes of this neighborhood.

6



3.3.8 Random Walk (RW)

Random Walk starts from an initial node v0. Initially, it sets the set Es of visited edges to ∅. At

step l, it chooses one node, vj , of the neighborhood, ν(vl−1), of vl−1. This choice can be performed

uniformly at random, or according to some policy. Then, it sets vl = vj and adds to Es the edge from

vl−1 to vl.

This process continues for t stages until to the budget B is exhausted. The final sampled network

Ns = 〈Vs, Es〉 can be constructed in two different ways, namely:

• By setting Vs = {v0, v1, . . . , vt} and Es = Es.

• By setting Vs = {v0, v1, . . . , vt}, Es =
⋃
vl∈Vs ι(v

l) and Vs = {vl, vj |(vl, vj) ∈ Es}. In this case,

RW reduces to Node Sampling with Neighborhood.

RW is also related to SBS. In fact, it can be considered as a specific case of SBS where k = 1.

However, there is an important difference between them because RW is memoryless. In fact, in SBS,

the participants from previous stages are excluded, whereas, in RW, the same node can be visited

more than once.

It is possible to show that, when RW is applied on an undirected network, it returns a uniform

distribution of edges. In this sense, it can be considered equivalent to ES.

Finally, it is worth pointing out that, if the choice of the next node to visit is performed uniformly

at random, a node has a degree-proportional probability to be in Vs.

3.3.9 Metropolis-Hastings Random Walk (MHRW)

Metropolis-Hastings Random Walk is capable of returning a desired node distribution from an arbi-

trary undirected network. It uses two parameters, namely the probability Pvl,vj to pass from vl to vj
and the desired distribution δv of a node v.

MHRW behaves analogously to RW. However, if vl is the current node at stage l, the next node vj
to visit is determined according to the parameter Pvl,vj . The value of this parameter can be determined

taking three possible cases into account. Specifically:

• If vl 6= vj and vj ∈ ι(vl), then Pvl,vj = Mvl,vj ·min
{

1,
δvj
δ
vl

}
.

• If vl 6= vj and vj 6∈ ι(vl), then Pvl,vj = 0.

• If vl = vj then Pvl,vj = 1−
∑

vk∈Vs,vk 6=vl Pvl,vk .

Here, Mvl,vj = Mvj ,vl is a normalization factor for the pair 〈vl, vj〉. It allows the condition∑
vk∈Vs,vk 6=vl Pvl,vj ≤ 1 to be satisfied. Since adding more higher-weight self-loops makes the mix-

ing time longer, Mvl,vj should be selected to be as large as possible. A possible choice for it is

Mvl,vj = min
{

1
|ι(vl)| ,

1
|ι(vj)|

}
.

The application scenario of MHRW is more limited than the one of RW. In fact, to calculate Pvl,vj ,

the degree of the neighboring nodes should be known. This information is often unavailable even if,

in some cases, it is fixed (e.g., in P2P) or it can be obtained through a suitable API (e.g., in Online

Social Networks).
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3.3.10 Random Walk with Escaping (RWE)

Random Walk with Escaping, or Random Jump, is analogous to RW. However, if vl is the current

node, to determine the next node to visit, besides walking to a node of ι(vl), RWE can jump to an

arbitrary random node vj ∈ V . RWE is not very useful as a sampling technique. Indeed, it is classified

as a TBS technique. However, TBS generally operates when the whole network cannot be reached, or

at least direct Node Sampling or Edge Sampling is hard. By contrast, RWE needs an efficient Node

Sampling as a support. As a consequence, it cannot be adopted in several scenarios. Furthermore, it

is possible to show that, even when RWE can be adopted, it is hard to construct unbiased estimators

for the properties of N starting from the ones of Ns.

3.3.11 Multiple Independent Random Walkers (MIRW)

One problem of RW is that it tends to be trapped in locally dense regions. Therefore, it could have high

bias, depending on the choice of initial nodes. Multiple Independent Random Walkers was proposed

to address this problem. First, it applies NS to choose l initial nodes. Then, it splits the budget B

among l Random Walks and lets them execute independently from each other. Finally, it merges the

results produced by the l Random Walkers. As a matter of fact, it has been shown that the estimation

errors of MIRW are higher than those of MDRW (see Section 3.3.12). As a consequence, we have

mentioned MIRW only for completeness.

3.3.12 Multi-Dimensional Random Walk (MDRW)

Multi-Dimensional Random Walk, or Frontier Sampling, starts by determining the number of dimen-

sions, k. Then, it initializes a list, L, of nodes by assigning k nodes, determined randomly via NS, to

it. After this, it performs several iterations until the Budget, B, is exhausted.

During one of these iterations, it first chooses one node, vl, from L with a probability p(vl)

proportional to |ι(vl)|. Then, it selects a node vj ∈ ι(vl). Finally, it adds the edge (vl, vj , wlj) to Es
and substitutes vl with vj in L.

It has been shown that: (i) MDRW provides very good estimations of some graph properties; (ii)

when l→∞, MDRW obtains a uniform distribution of both nodes and edges.

3.3.13 Forest Fire Sampling (FFS)

Forest Fire Sampling can be considered as a probabilistic version of Snowball Sampling (see Section

3.3.7). Specifically, in SSB, k neighbors are selected at each round, whereas, in FFS, a geometrically

distributed number of neighbors is selected at each round. If the parameter p of the geometric distri-

bution is set to 1
k , then the corresponding expectation is equal to k and FFS behaves very similarly

to SBS.

An important common point between FFS and SBS, which differentiates both of them from RW

and its variants, is that, in FFS and SBS, once a node is visited, it will not be visited again. By

contrast, in RW and its variants, repeated nodes are included in the sample for estimation purposes.
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3.3.14 Respondent Driven Sampling (RDS)

The original idea of Respondent Driven Sampling is to run SBS and to correct the bias according to

the sampling probability of each node of Vs. Currently, RW is often substituted for SBS because the

bias of RW can be more easily corrected. In this case, RDS is also called Re-Weighted Random Walk

(RWRW). We point out that, actually, RDS itself is not a standalone network sampling technique.

Indeed, it uses SBS or RW for sampling and, then, corrects the corresponding bias.

The principle underlying this approach is the following: it does not matter what sampling technique

is adopted (NS, ES or TBS); as long as the sample probability is known, a suitable bias correction

technique can be invoked.

If we consider sampling and estimating tasks as a whole activity, RWRW and MHRW seem to have

the same objective and similar results. RWRW is a practical approach to estimate several properties

without knowing the full graph.

4 Analysis and Assessment

In this section, we propose a comparison of network sampling approaches as far as network property

preservation and network property estimation are concerned. Although these two goals are different,

their results are strictly related and can be transformed into each other.

In the literature, it has been shown that the Node Sampling or the Edge Sampling approaches

and their variants (i.e., NS, ES, NSN, ESC and NSC) are completely dominated by Traversal Based

Sampling approaches across all network features [12]. Among the TBS approaches, there is no clear

single winner. Each approach is the best one for at least some network feature of a particular network

configuration.

More specifically, it has been shown that, in presence of a Poisson degree distribution, approaches

such as SBS and FFS, configured with the mean of their geometric distribution set to 80% of the

number of the remaining unselected neighbors (we call this configuration FFS80%), can reconstruct

a good representation of some local parts of the network nodes relatively well. Furthermore, in the

presence of a power law degree distribution, approaches as RW and FFS, configured with the mean

of the geometric distribution set to 20% of the number of the remaining unselected neighbors (we call

this configuration FFS20%), which explores nodes farther away from the focal ones, performs better.

A closer examination of the approaches provides an, at least partial, explanation of these results.

Indeed, SSB tends to return sampled networks whose degree distributions contain inflated proportions

of nodes with the highest and the lowest degrees. Clearly, this causes these approaches to perform

poorly when applied to networks with a power-law degree distribution, which are characterized by

a small proportion of high-degree nodes. On the contrary, RW tends to return sampled networks,

whose nodes never have the highest degrees. Now, since the proportion of nodes with the highest

degree is lower in the power-law degree distribution than in the Poisson distribution, RW performs

better when applied to networks with the former distribution than to networks with the latter one.

Furthermore, networks with Poisson distributions tend to be homogeneous throughout their regions;

as a consequence, a locally-oriented approach, like SSB, can provide good results. On the contrary,

networks with power-law degree distributions require a more global exploration; as a consequence, for
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this kind of network, FFS and RW appear more adequate.

Summarizing and, at the same time, deepening this topic, we can say that SBS is well suited for

sampling social networks with Poisson degree distribution, RW is adequate for sparse social networks

with power-law degree distribution and FF is well suited for dense social networks with power-law

degree distribution. To implement this recommendation, the degree distribution of network nodes

must be known. However, this information may be unavailable in many cases. In the literature, it has

been shown that FFS presents the best overall performance in determining degree distributions across

different kinds of network and sample size. Therefore, it could be useful to exploit an adaptive sampling

procedure using different sampling approaches at different stages. For instance, this procedure could

start with FFS when no knowledge about the distribution of network nodes is available. Then, after

a certain number of nodes have been included in the sample, it would be possible to determine the

degree distribution of the current sample and, based on it, to continue with FFS or to switch to SBS

or RW.

5 Closing Remarks

In this chapter, we have provided a general presentation of algorithms for traversing, searching and

sampling graphs. We have seen that these algorithms have been intensively investigated in many

research fields. On the other hand, they have been little employed in bioinformatics and biomedicine,

where the most important adoption cases regard knowledge classification and motif search. In this

chapter, we have introduced a formalism to represent a complex network, we have provided three

taxonomies of sampling approaches, we have presented a brief description of each of them and, finally,

we have compared them. We think that network traversing/searching/sampling approaches could have

many more use cases in the future. As a matter of fact, the amount of available data is increasing

enormously. This fact could give rise to increasingly sophisticated networks. In several cases, it could

be impossible to perform the analysis of the whole network; when this happens, the possibility of

generating reliable samples could be extremely beneficial.
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