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Vito, I-89122 Reggio Calabria, Italy

Abstract

Graph and network analysis has been a multidisciplinary research field from its origin. As such,

it has been widely employed also in bioinformatics and in biomedicine, where approaches based on

graph indexes and descriptors have been proposed for addressing many challenges. In this chapter,

first we show the main ways to represent a network. Then, we describe the most known network

indexes, starting from the basic ones, continuing with the centrality based methods, and finishing

with cohesion-based and other methods. Finally, we draw some closing remarks.

Keywords: Network representation, Degree, Density, Walk, Path, Cycle, Radius, Diameter, Cen-

trality Indexes, Triads, Cliques, Components, Critical Mass

1 Introduction

Network Analysis (hereafter, NA) has been a multidisciplinary research field from its origin. Rela-

tionships represent the key concept in a network. Indeed, relationships, and not participants, play the

biggest role in modeling a network [26, 47].

NA allows the identification of the relationship patterns that exist in a network. Moreover, it

allows the detection, and the subsequent investigation, of the information (and/or other resource)

flow among participants. Finally, it focuses on interactions among participants, which differentiates

it from other kinds of analysis that mainly investigate the features of a single participant.

Network analysis-based approaches allow interactions in a group to be mapped, as well as the

connectivity of a network to be visualized and investigated. Furthermore, they make it possible to

quantify the processes taking place among network participants [40, 54, 61].

Three research fields where the use of NA is rapidly increasing are bioinformatics, biomedicine and

QSAR/QSPR. Think, for instance, of Public Health [46, 7, 29]. According to [46], it is possible to find
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three main types of network in this sector, namely: (i) transmission networks, (ii) social networks, and

(iii) organizational networks. Transmission networks are particularly relevant and, therefore, widely

investigated. They allow the analysis of the diffusion of both diseases [17, 18, 33, 2, 60] and medical

information [60, 37, 58, 23, 59]. Two very relevant application contexts for transmission networks are

social epidemiology [8, 27] and information diffusion on social networks [16, 16, 53, 28, 42, 65]. Social

networks investigate how social structures and relationships influence both public health and human

behavior [39, 6, 10, 35, 45]. Organizational networks represent the most recent research sector; in this

case, researchers evaluate the impact of associations and/or agencies on public health [43, 9, 5, 48, 36].

In bioinformatics, an important investigation regards the usage of “information-based” tools to

analyze medical problems. In this case, two very important research areas are molecular analysis

[63, 12, 19, 25, 55] and brain analysis [52, 22, 1, 56, 67]. Another relevant topic concerns the definition of

software packages and analytic tools allowing extensive studies on large datasets [31, 44, 68, 41, 38, 11].

In this analysis, two of the most used indexes are: (i) centrality indicators (adopted, for instance,

in [66, 34]), and (ii) connection indicators (employed, for instance, in [21, 15, 64]). An overview on

the usage of these indicators can be found in [20]. For instance, Closeness Centrality is used in [24]

to study the evolution of protein-protein networks. In [49], the authors use eigenvector centrality

to predict good candidate disease-related genes. In [14], the authors adopt 16 different centrality

measures to analyze 18 metabolic networks. Finally, in [30], the authors employ both centrality and

cohesion indexes for understanding how miRNAs influence the protein interaction network.

QSARs (Quantitative Structure Activity Relationships) and QSPRs (Quantitative Structure Prop-

erty Relationship) represent mathematical correlations between a given biological activity or molecular

property and one or more physicochemical and/or molecular structural properties. These are called

descriptors since they “describe” the activity or the property under examination. Topological in-

dices are very important descriptors. They provide a numerical representation of the topology of

a molecule. One of the first topological indices was proposed by Wiener in 1947 [62]. This index

correlates well with the boiling points of alkanes. Three important families of topological indices

are molecular connectivities, electrotopological state (e-state) values, and information content indices

[13, 3, 32, 4, 51, 50, 57].

This chapter is organized as follows. In Section 2, we describe how networks can be represented.

In Section 3, we illustrate the main indexes employed in network analysis. Finally, in Section 4, we

draw our conclusions.

2 Network Representation

A network N = 〈V,E〉 consists of a set V of nodes and a set E of edges. Each edge eij = (vi, vj)

connects the nodes vi and vj . Edges can be either directed (when they can be traversed only in one

direction) or undirected (when they can be traversed in both directions). Furthermore, networks can

be weighted or unweighted. If a network is weighted, it can be represented as (vi, vj , wij), where wij

denotes the weight of the corresponding edge. On the basis of the reference context, this weight could

represent strength, distance, similarity, etc.

Example 2.1 Consider the networks in Figure 1. The one on the left is undirected and unweighted,
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Figure 1: An example of undirected and unweighted network (on the left), and an example of directed

and weighted network (on the right)

whereas the one on the right is directed and weighted. For instance, the edge A − C in the network

on the right indicates that there is a link from A to C and that the weight of this link is 34.

An important way to represent a network N employs the adjacency matrix A. This is a |V | × |V |
matrix. Each element corresponds to an edge between the nodes corresponding to the row and column.

If N is unweighted, the generic element A[i, j] is set to 1 if there exists an edge from vi to vj ; otherwise,

it is set to 0. By contrast, if N is weighted, A[i, j] is set to the weight of the edge from vi to vj . Finally,

if N is undirected, the corresponding adjacency matrix is conventionally shown as lower triangular

matrix. The adjacency matrix is easily understood; however, in real cases, it is very sparse (i.e., most

of its elements are set equal to 0) and, therefore, it wastes a lot of space.

To reduce the waste of space, N can be represented as an edge list L. In this case, if N is

unweighted, L consists of a list of pairs, each representing an edge with its starting and ending nodes.

By contrast, if N is weighted, L consists of a list of triplets, each representing an edge with the

corresponding starting node, ending node and weight. Clearly, an edge list is more compact, but less

clear, than an adjacency matrix.

A further reduction of the space needed to represent N is obtained by adopting an adjacency list

L∗. If N is unweighted, L∗ consists of a list of pairs 〈vi,L′i〉, where vi is a node of N and L′i is the list

of the nodes reachable from it. If N is weighted, L∗ consists of a list of pairs 〈vi,L′′i 〉, where vi is a

node of N and L′′i is, in turn, a list of pairs (vj , wij), such that vj is reachable from vi and wij is the

weight of the corresponding edge. Clearly, among the three structures presented above, the adjacency

list is the most compact, but also the least clear.

Example 2.1 (...cnt’d)

Consider the networks shown in Figure 1. The corresponding adjacency matrixes are reported in

Figure 2, and the associated edge lists are shown in Table 1. Finally, the corresponding adjacency

lists are illustrated in Table 2.

Undirected and Unweighted Network Directed and Weighted Network

(A,B), (A,C), (A,D), (A,E), (A,C, 34), (A,D,21), (B,A,1), (C,B,2),

(B,C), (C,D), (D,E), (E,F) (C,D,3), (D,E,5), (E,F,8), (F,A,13)

Table 1: The Edge Lists corresponding to the networks of Figure 1
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Figure 2: The Adjacency Matrixes corresponding to the networks of Figure 1

Undirected and Unweighted Network Directed and Weighted Network

A - {B, C, D, E} A - {(C,34), (D,21)}
B - {C} B - {(A,1)}
C - {D} C - {(B,2), (D,3)}
D - {E} D - {(E,5)}
E - {F} E - {(F,8)}
F - {} F - {(A,13)}

Table 2: The Adjacency Lists corresponding to the networks of Figure 1

3 Index Description

3.1 Basic Indexes

The most basic, yet extremely important, indexes for a network N are its order and its size. The

order of N indicates the number of its nodes, whereas the size of N denotes the number of its edges.

Given a node vi of the undirected network, N , the number of edges connecting vi to the other

nodes of N represents the degree of vi. If N is directed, the number of edges incoming to and outgoing

from vi represents the indegree and the outdegree of vi, respectively.

If N is undirected, it is possible to consider the mean degree, i.e., the ratio of the sum of the degrees

of its nodes to the number of nodes. If N is directed, it is possible to define the mean indegree and

the mean outdegree of N in an analogous fashion.

If N is unweighted, its density is simply the ratio of its edges to the number of all its possible

edges. Recall that the number of all possible edges of N is |V |·(|V |−1)2 , if N is undirected, whereas it

is |V | · (|V | − 1), if N is directed. If N is weighted, its density can be defined as the ratio of the sum

of the weights of the existing edges to the number of all its possible edges.

Example 2.1 (...cnt’d)

Consider the undirected network of Figure 1. Its order is 6 and its size is 8. The degree of node A

of this network is 4. The mean degree of the network is 2.6, whereas its density is 0.53.

Consider, now, the directed network of the same figure. Its order is 6 and its size is 8. The indegree

of node D is 2, whereas its outdegree is 1. The mean indegree and the mean outdegree of the network

are 1.33 and 1.33, respectively. Finally, its density is 2.90.

Given a network, N , a walk of N consists of an alternating sequence of nodes and edges that

begins and ends with a node. If the starting and the ending nodes of a walk are different, it is said to

be open; otherwise, it is said to be closed. If no node is visited twice, a walk is said to be simple.

Given a network, N , a path is an open simple walk. A cycle is a closed simple walk. A trail is a

walk that includes each edge no more than once. A tour is a closed trail, i.e. a walk that starts and
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ends at the same node and has no repeated edges.

If N is unweighted, the length of a walk of N consists of the number of its edges. If N is weighted,

the length of a walk of N is the sum of the weights of its edges. Given two nodes vi and vj of N , their

geodesic distance is the length of the shortest path from vi to vj . Given a node vi, the eccentricity of

vi is the maximum geodesic distance between vi and any other node of N . Finally, the radius of N
is the minimum eccentricity over all its nodes, whereas, if N is connected, the diameter of N is the

maximum eccentricity over all its nodes.

Example 2.1 (...cnt’d)

Consider the directed weighted network of Figure 1. An example of a walk is the one linking nodes

A−D−E−F −A−C. This is an open walk. Instead, an example of a closed walk is B−A−C−B.

Since no node is crossed twice, this walk is simple.

The walk A−C−D is an example of a path, whereas the walk A−C−D−E−F−A is an example of

a cycle. The walk A−C−D−E is an example of a trail. Finally, the walk B−A−D−E−F−A−C−B
is an example of a tour. The length of the walk A−D−E −F is 34. Consider, now, nodes C and A.

Their shortest path is C −B −A. The distance of this shortest path is 3 and represents the geodesic

distance from C to A. The eccentricity of the node C is 16. Finally, the diameter of this network is 62.

3.2 Centrality Indexes

Centrality indexes aim at measuring power, influence, or other similar features, for the nodes of a

network. In real life, there is an agreement on the fact that power and influence are strictly related

to relationships. By contrast, there is much less agreement about what power and influence mean.

Therefore, several centrality indexes have been proposed to capture the different meanings associated

with the term “power”.

3.2.1 Degree Centrality

In a network, nodes having more edges to other nodes may have an advantage. In fact, they may have

alternative ways to communicate, and hence are less dependent on other nodes. Furthermore, they

may have access to more of the resources of the network as a whole. Finally, because they have many

edges, they are often third-parties in exchanges among others, and can benefit from this brokerage.

As a consequence of all these observations, a very simple, but often very effective, centrality index is

node degree. The corresponding form of centrality is called degree centrality.

In an undirected network, the degree centrality of a node is exactly the number of its edges. In a

directed network, instead, it is important to distinguish centrality based on indegree from centrality

based on outdegree. If a node has a high indegree, then many nodes direct edges to it; as a consequence,

a high indegree implies prominence or prestige. If a node has a high outdegree, then it is able to

exchange with many other nodes; as a consequence, a high outdegree implies influence.

In many real-life networks (e.g., online social networks) degree centrality follows a power-law

distribution. This implies that there are few nodes with a high degree centrality and many nodes with

a low degree centrality.
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3.2.2 Closeness Centrality

A weak point of degree centrality is that it considers only the immediate edges of a node or the edges

of the neighbors of a node, rather than indirect edges to all the other nodes. Actually, a node might

be linked to a high number of other nodes, but these other nodes might be rather disconnected from

the network as a whole. In this case, the original node could be quite central, but only in a local

neighborhood.

Closeness centrality emphasizes the distance (or, better, the closeness) of a node to all the other

nodes in the network. Depending on the meaning we want to assign to the term “close”, a number of

slightly different closeness measures can be defined.

In order to compute the closeness centrality of the nodes of a network, first the length of the

shortest path between every pair of nodes must be computed. Then, for each node: (i) the average

shortest distance to all the other nodes is computed; (ii) this distance is divided by the maximum

distance; (iii) the obtained value is subtracted from 1. The result is a number between 0 and 1; the

higher this number, the higher the closeness and, consequently, the lower the distance.

As for the distribution of the values of closeness centrality in a network, in many real-life network

(e.g., online social networks) few nodes form a long tail on the right but all the other nodes form a

bell curve residing at the low end of the spectrum.

3.2.3 Betweenness Centrality

Betweenness centrality starts from the assumption that a node vi of a network N can gain power if it

presides over a communication bottleneck. The more nodes of N depend on vi to make connections

with other nodes, the more power vi has. On the other side, if two nodes are connected by more than

one shortest path and vi is not on all of them, it loses some power. The betweenness centrality of vi
considers exactly the proportion of times vi is on the shortest path between other nodes; the higher

this proportion the higher betweenness centrality.

Betweenness centrality also allows the identification of boundary spanners, i.e., nodes acting as

bridges between two or more subnetworks that, otherwise, would not be able to communicate to each

other. Finally, betweenness centrality also measures the “stress” (in the sense of a higher usage) which

vi must undergo during the activities of N .

Betweenness centrality can be measured as follows: first, for each pair of nodes of N , the shortest

path is computed. Then, for each node vi of N , the number of the shortest paths, which vi is involved

on, is computed. Finally, if necessary, the obtained results can be normalized to the range [0, 1].

3.2.4 Eigenvector Centrality

Eigenvector centrality starts with the assumption that, in order to evaluate the centrality of a node,

vi, in a network, N , instead of simply adding the number of edges to compute degree, one should

weight each of the edges by the degree of the node at the other end of the link (i.e., well connected

nodes are worth more than badly connected ones). In this case, vi is central if it is connected to other

nodes that, in turn, are central. A node with a high eigenvector centrality is connected to many nodes

that are themselves connected to many nodes.
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Eigenvector centrality allows the identification of the so called “gray cardinals”, i.e., nodes repre-

senting, for instance, advisors or decision makers operating secretely and unofficially. For instance,

Don Corleone was a “gray cardinal” because he had an immense power, since he surrounded himself

with sons and his trusted “capos”, who handled his affairs. By knowing well connected people, “gray

cardinals” can use these relationships to reach their objectives while staying largely in the shadow.

The eigenvector centrality of vi can be computed as follows: (i) a centrality score of 1 is assigned

to all nodes; (ii) the score of each node is computed as a weighted sum of the centralities of all the

nodes of its neighborhood; (iii) the obtained scores are normalized by dividing them by the largest

score; (iv) steps (ii) and (iii) are repeated until the node scores stop changing.

3.2.5 PageRank

PageRank extends the idea of centrality. In fact, instead of outgoing edges, PageRank centrality is

determined by incoming edges. PageRank was originally developed for indexing web pages. In fact, it

was extensively used by Google to rank web pages. However, it can be applied to all directed networks.

PageRank follows the same ideas as eigenvector centrality, i.e., the PageRank of vi depends on the

number of edges incoming to it, weighted by the PageRank of the nodes at the other end of the edge.

Analogously to what happens for the computation of the eigenvector centrality, the computation

of PageRank is iterative. However, differently from Eigenvector Centrality, PageRank computation is

local in nature, because only immediate neighbors are taken into consideration; however, its iterative

nature allows global influence to propagate through the network, although much more attenuated

than in the case of eigenvector centrality. As a consequence of its local nature, the computation of

PageRank scales much better to very large networks. Furthermore, at any time, it returns a result,

but if more iterations are performed, the quality of results greatly improves.

3.3 Cohesion Indexes

One of the main issues in NA is the identification of cohesive subgroups of actors within a network.

Cohesive subgroups are subsets of actors linked by strong, direct, intense, frequent and/or positive

relationships. Cohesion indexes aim at supporting the identification of cohesive subnetworks in a

network.

To introduce cohesion indexes, we must start with the concept of a subnetwork. A subnetwork

consists of a subset of nodes of a network and of all the edges linking them. An ego-network is

a subnetwork consisting of a set of nodes, called “alters”, connected to a focal node, called “ego”,

along with the relationships between the ego and the alters and any relationships among the alters.

These networks are important because the analysis of their structure provides information useful to

understand and predict the behavior of ego.

3.3.1 Triads

A triad is a triple of nodes and of the possible edges existing among them. With undirected networks,

there are four possible kinds of relationship among three nodes (see Figure 3), i.e., no edges, one

edge, two edges or three edges. A triad census aims at determining the distribution of these four

7



Figure 3: The possible kinds of relationship involving a triad in an undirected network

Figure 4: The possible kinds of relationship involving a triad in a directed network

kinds of relationship across all the possible triads. It can give a good approximation of how much a

population is characterized by “isolation”, “couples only”, “structural holes” or “closed triads”. In

this context, “structural holes” represent a very interesting concept. Given three nodes vi, vj and vk,

there exists a structural hole if vi is connected to vj , vj is connected to vk but vi is not connected to

vk. Structural holes may have important implications in a network; in fact, they are nodes capable

of using and handling asymmetric information; furthermore, they can also bridge two communities.

The ratio between structural holes and closed triads is a very important index, because, if it is high,

then the corresponding network tends to be hierarchic, whereas, if it is low, then the corresponding

network tends to be egalitarian.

Starting from triads, it is possible to define clustering coefficient. It is an important indicator of

the density of a network. Given a node v, the clustering coefficient of v is defined as the ratio of the

number of the existing closed triads involving v to the maximum possible number of triads involving

v.

With a directed network, there are 16 possible kinds of relationship among three nodes (see Figure

4), including those exhibiting hierarchy, equality, the formation of exclusive groups or clusters. A very

important scenario is that of transitive triads (i.e., relationships where, if there are edges from vi to vj
and from vj to vk, then there is also an edge from vi to vk). Such triads represent the “equilibrium”

toward which triadic relationships tend.

3.3.2 Cliques

In its most general definition, a clique is a subnetwork of a network, N , in which its nodes are more

closely and intensely linked to each other than they are the other nodes of N . In its most formal and

rigorous form, a clique is defined as a maximal complete subnetwork of a given network. The smallest
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clique is the dyad, consisting of two nodes linked by an edge. Dyads can be extended to become more

and more inclusive in such a way as to form strong or closely connected regions in graphs. A clique

with four or more nodes consists of several overlapping closed triads and, as such, it inherits many of

the properties of closed triads.

Taking into account that the concept of clique is an extension of the concept of a closed triad when

the number of involved nodes is higher than 3, it is possible to introduce the concept of a k-clique

coefficient as an extension of the concept of clustering coefficient. Specifically, given a node v, the

k-clique coefficient of v is defined as the number of existing cliques of k nodes involving the maximum

possible number of cliques of k nodes involving v.

This rigorous definition of a clique may be too strong in several situations. Indeed, in some cases,

at least some members are not so strongly connected. To capture this cases, the definition of clique

can be relaxed.

One way to do so is to define a node as a member of a clique if it is connected to each node of

the clique at a distance greater than 1. In this case, the path distance 2 is used. This definition of

clique is called N-clique1, where N stands for the maximum length of the allowed path. The definition

of N-clique presents some weaknesses. For instance, it tends to return long and stringy N-cliques.

Furthermore, N-cliques have properties undesirable for many purposes. For instance, some nodes of

N-cliques could be connected by nodes that are not, themselves, members of the N-clique. To overcome

this last problem, it is possible to require that the path distance between any two nodes of an N-clique

satisfies a further condition, which forces all links among members of an N-clique to occur by way of

other members of the N-clique. The structure thus obtained is called N-clan.

An alternative way of relaxing the rigorous definition of clique consists of allowing nodes to be

members of a clique even if they have edges to all but k other members. In other words, a node is a

member of a clique of size N if it has edges to at least N−k nodes of that clique. This relaxation leads

to the definition of k-plex. While the N-clique approach often leads to large and stringy groupings,

the k-plex approach often returns large numbers of smaller groupings. Depending on the goals of the

analysis, both N-clique and k-plex could provide useful information about the sub-structure of groups.

A k-core is a maximal group of nodes all of whom are connected to at least k other nodes of the

group. The k-core approach is more relaxed than the k-plex one; indeed, it allows a node to join the

group if it is connected to k other nodes, regardless of how many other nodes it may not be connected

to. By varying the value of k different group structures can emerge. K-cores usually are more inclusive

than k-plexes.

If a network is weighted, it is possible to introduce a last concept, i.e., the concept of F-groups.

F-groups return the maximal groups formed by “strongly transitive” and “weakly transitive” triads.

A strongly transitive triad exists if there is an edge (vi, vj , wij), an edge (vj , vk, wjk) and an edge

(vi, vk, wik) and wij = wjk = wik. A weakly transitive triad exists if wij and wjk are both higher than

wik, but this last is greater than some cut-off value.

1Observe that, in this definition, an N-clique is different from a clique composed by N nodes. In fact, on this definition,

an N-clique is a subgraph where all nodes are connected to each other either directly or by means of paths comprising

at most N edges.
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3.3.3 Components

Components of a network are subnetworks that are internally connected, but disconnected from the

other subnetworks. For directed networks, it is possible to define two different kinds of component. A

weak component is a set of nodes that are connected, regardless of the direction of edges. A strong

component also considers the direction of edges.

Rather as the strict definition of clique may be too strong to capture the concept of a maximal

group, the notion of component may be too strong to capture all the meaningful weak points, holes

and locally low density sub-parts of a larger network. Therefore, also for components, some more

flexible definitions have been proposed. Due to space limitations, we do not illustrate these definitions

in detail. The interested reader can find them in [26].

3.4 Other Indexes

In this section, we present some other concepts about NA that can be very useful in Bioinformatics and

Computational Biology. The first concept regards the diffusion in some kinds of network, like online

social networks. Several past studies have shown that the diffusion rate in a network is initially linear.

However, if a critical mass is reached, this rate becomes exponential until the network is saturated.

The same investigations have shown that the critical mass is reached when about 7% of nodes are

reached by the diffusion process. From an economic point of view, in a diffusion process, critical mass

is reached when benefits start outweighing costs. If benefits do not balance costs, the critical mass is

not obtained, and the diffusion process itself will eventually fail. This concept is also valid in contexts

closer to biomedicine. For instance, it is valid to model the spread of an epidemic in a population.

If diffusion regards information, there are several indexes that can help to foresee if a node vi
will contribute to the diffusion process. These indexes are: (i) relevance (does vi care at all?); (ii)

saliency (does vi care right now?); (iii) resonance (does the information content agrees with what the

actor associated with vi believes in?); (iv) severity (how good or bad is the information content?); (v)

immediacy (does information require an immediate action?); (vi) certainty (does information cause

pain or pleasure?); (vii) source (which node did the information come from and does vi trust this

source?); (viii) entertainment value (is the information funny?).

To understand the behavior of actors in a network, a key concept is homophily. It states that two

actors, who share some properties, will more likely form links than two actors, who do not. Other

ways to express the same concept state that: (i) two actors that are very close to a third one in a

network often tend to link to each other; (ii) two actors sharing attributes are likely to be nearer to

one another in networks.

In some kinds of networks, such as online social networks or epidemiological networks, homophily

is a major force, which, if left alone, would lead communities to become excessively uniform and, at

the same time, extremely segregated. To avoid this risk, two important elements act in real life, i.e.,

curiosity and weak ties. In particular, it has been shown that weak ties are much more powerful than

strong ties in stimulating innovation in the behavior of an actor or of a whole network.
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4 Closing Remarks

In this chapter, we have provided a presentation of several graph indexes and descriptors. We have seen

that network analysis is largely employed in bioinformatics and biomedicine. Then, we have illustrated

the most common network representations proposed in the past. Finally, we have presented a large

variety of both basic and advanced indexes and descriptors. We think that the usage of graph-based

indexes and descriptors in bioinformatics did not come to an end. On the contrary, in the future, the

availability of large amounts of data in these contexts, along with the development of more and more

powerful hardware, will lead to more and more complex and effective approaches for facing the new

challenges that will appear in these sectors.

Acknowledgement

This work was partially supported by Aubay Italia S.p.A.

References

[1] S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E.D. Bullmore. A resilient, low-frequency, small-world human

brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26(1):63–72,

2006. Soc Neuroscience.

[2] S.O. Aral. Sexual network patterns as determinants of std rates: paradigm shift in the behavioral epidemiology of

stds made visible, 1999.

[3] A.T. Balaban. Applications of graph theory in chemistry. Journal of chemical information and computer sciences,

25(3):334–343, 1985. ACS Publications.

[4] S.C. Basak. Philosophy of mathematical chemistry: A personal perspective. HYLE–International Journal for

Philosophy of Chemistry, 19(1):3–17, 2013.

[5] T. Becker, M. Leese, P. McCrone, P. Clarkson, G. Szmukler, and G. Thornicroft. Impact of community mental health

services on users’ social networks. PRiSM Psychosis Study. 7. The British Journal of Psychiatry, 173(5):404–408,

1998. RCP.

[6] L. Berkman. Assessing the physical health effects of social networks and social support. Annual Review of Public

Health, 5(1):413–432, 1984. Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA.

[7] L. Berkman and T. Glass. Social integration, social networks, social support, and health. Social Epidemiology,

1:137–173, 2000.

[8] L.F. Berkman, I. Kawachi, and M.M. Glymour. Social Epidemiology. Oxford University Press, 2014.

[9] S. Borgatti and P. Foster. The network paradigm in organizational research: A review and typology. Journal of

Management, 29(6):991–1013, 2003. Sage Publications Sage CA: Thousand Oaks, CA.

[10] J. Cassel. The contribution of the social environment to host resistance. American Journal of Epidemiology,

104(2):107–123, 1976. Oxford University Press.

[11] H. Chen, L. Ding, Z. Wu, T. Yu, L. Dhanapalan, and J. Chen. Semantic web for integrated network analysis in

biomedicine. Briefings in Bioinformatics, 10(2):177–192, 2009. Oxford Univ Press.

[12] M. Cusick, H. Yu, A. Smolyar, K. Venkatesan, A. Carvunis, N. Simonis, and J. Rual. Literature-curated protein

interaction datasets. Nature Methods, 6(1):39–46, 2009. Nature Publishing Group.

[13] J.C. Dearden. The Use of Topological Indices in QSAR and QSPR Modeling. In Advances in QSAR Modeling,

pages 57–88. 2017. Springer.

11



[14] G. del Rio, D. Koschutzki, and G. Coello. How to identify essential genes from molecular networks? BMC Systems

Biology, 3(1):102, 2009. BioMed Central.

[15] E. Estrada. Generalized walks-based centrality measures for complex biological networks. Journal of Theoretical

Biology, 263(4):556–565, 2010. Elsevier.

[16] G. Eysenbach. Medicine 2.0: social networking, collaboration, participation, apomediation, and openness. Journal

of Medical Internet Research, 10(3):e22, 2008. JMIR Publications Inc.

[17] S. Friedman and S. Aral. Social networks, risk-potential networks, health, and disease. Journal of Urban Health,

78(3):411–418, 2001. Springer.

[18] S. Friedman, A. Neaigus, B. Jose, R. Curtis, M. Goldstein, G. Ildefonso, R. Rothenberg, and D. Des Jarlais.

Sociometric risk networks and risk for HIV infection. American Journal of Public Health, 87(8):1289–1296, 1997.

American Public Health Association.

[19] T. Gandhi, J. Zhong, S. Mathivanan, L. Karthick, K. Chandrika, S. Mohan, S. Sharma, S. Pinkert, S. Nagaraju, and

B. Periaswamy. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction

datasets. Nature Genetics, 38(3):285–293, 2006. Nature Publishing Group.

[20] M. Ghasemi, H. Seidkhani, F. Tamimi, M. Rahgozar, and A. Masoudi-Nejad. Centrality measures in biological

networks. Current Bioinformatics, 9(4):426–441, 2014. Bentham Science Publishers.

[21] M. Girvan and M. E. Newman. Community structure in social and biological networks. Proceedings of the National

Academy of Science of the United States of America, 99(12):7821–7826, 2002.

[22] M. Greicius, B. Krasnow, A. Reiss, and V. Menon. Functional connectivity in the resting brain: a network analysis

of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1):253–258, 2003. National

Acad Sciences.

[23] X. Guardiola, A. Diaz-Guilera, C. Perez, A. Arenas, and M. Llas. Modeling diffusion of innovations in a social

network. Physical Review E, 66(2):026121, 2002. APS.

[24] M. Hahn and A. Kern. Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction

networks. Molecular Biology and Evolution, 22(4):803–806, 2005. SMBE.

[25] J. Han. Understanding biological functions through molecular networks. Cell research, 18(2):224–237, 2008. Nature

Publishing Group.

[26] R. Hanneman and M. Riddle. Introduction to social network methods.

http://faculty.ucr.edu/∼hanneman/nettext/ , 2005. University of California, Riverside.

[27] S. Haustein, I. Peters, C. Sugimoto, M. Thelwall, and V. Lariviere. Tweeting biomedicine: An analysis of tweets

and citations in the biomedical literature. Journal of the Association for Information Science and Technology,

65(4):656–669, 2014. Wiley Online Library.

[28] C. Hawn. Take two aspirin and tweet me in the morning: how Twitter, Facebook, and other social media are

reshaping health care. Health Affairs, 28(2):361–368, 2009. Health Affairs.

[29] J. House, K. Landis, and D. Umberson. Social relationships and health. Science, 241(4865):540, 1988. The American

Association for the Advancement of Science.

[30] C. Hsu, H. Juan, and H. Huang. Characterization of microRNA-regulated protein-protein interaction network.

Proteomics, 8(10):1975–1979, 2008. Wiley Online Library.

[31] D. Huang, B. Sherman, and R. Lempicki. Systematic and integrative analysis of large gene lists using DAVID

bioinformatics resources. Nature Protocols, 4(1):44–57, 2009. Nature Publishing Group.

[32] O. Ivanciuc and A.T. Balaban. The graph description of chemical structures. Topological indices and related

descriptors in QSAR and QSPR, pages 59–167, 1999.

[33] A. Jolly, S. Muth, J. Wylie, and J. Potterat. Sexual networks and sexually transmitted infections: a tale of two

cities. Journal of Urban Health, 78(3):433–445, 2001. Springer.

[34] B. Junker. Exploration of biological network centralities with CentiBiN. BMC Bioinformatics, 7(1):219, 2006.

BioMed Central.

12



[35] B. Kaplan, J. Cassel, and S. Gore. Social support and health. Medical Care, 15(5):47–58, 1977. JSTOR.

[36] N. Kapucu. Interorganizational coordination in dynamic context: Networks in emergency response management.

Connections, 26(2):33–48, 2005.

[37] E. Katz and P. Lazarsfeld. Personal influence. 1955. New York: Free Press.

[38] M. Kearse, R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz,

and C. Duran. Geneious Basic: an integrated and extendable desktop software platform for the organization and

analysis of sequence data. Bioinformatics, 28(12):1647–1649, 2012. Oxford Univ Press.

[39] R. Kessler, R. Price, and C. Wortman. Social factors in psychopathology: Stress, social support, and coping

processes. Annual Review of Psychology, 36(1):531–572, 1985. Annual Reviews 4139 El Camino Way, PO Box

10139, Palo Alto, CA 94303-0139, USA.

[40] D. Knoke and S. Yang. Social Network Analysis, volume 154. Sage, 2008.

[41] P. Langfelder and S. Horvath. WGCNA: an R package for weighted correlation network analysis. BMC Bioinfor-

matics, 9(1):559, 2008. BioMed Central.

[42] L. Laranjo and A. Arguel. The influence of social networking sites on health behavior change: a systematic review

and meta-analysis. Journal of the American Medical Informatics Association, pages amiajnl–2014, 2014. The Oxford

University Press.

[43] S.J. Leischow and B. Milstein. Systems thinking and modeling for public health practice, 2006.

[44] P. Librado and J. Rozas. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinfor-

matics, 25(11):1451–1452, 2009. Oxford Univ Press.

[45] N. Lin, X. Ye, and W. Ensel. Social support and depressed mood: a structural analysis. Journal of Health and

Social Behavior, pages 344–359, 1999. JSTOR.

[46] D. Luke and J. Harris. Network analysis in public health: history, methods, and applications. Annual Review of

Public Health, 28:69–93, 2007. Annual Reviews.

[47] M.Tsvetovat and A. Kouznetsov. Social Network Analysis for Startups: Finding connections on the social web.

2011. O’Reilly Media, Inc.

[48] N. Mueller, M. Krauss, and D. Luke. Interorganizational Relationships Within State Tobacco Control Networks: A

Social Network Analysis. Preventing Chronic Disease, 1(4), 2004. Centers for Disease Control and Prevention.

[49] A. Ozgur, T. Vu, G. Erkan, and D. Radev. Identifying gene-disease associations using centrality on a literature

mined gene-interaction network. 24(13):i277–i285, 2008. Oxford Univ Press.

[50] D.H. Rouvray and R Bruce R.B. King. Topology in chemistry: Discrete mathematics of molecules. 2002. Elsevier.

[51] K. Roy, S. Kar, and R.N. Das. Understanding the basics of QSAR for applications in pharmaceutical sciences and

risk assessment. 2015. Academic Press.

[52] M. Rubinov and O. Sporns. Complex network measures of brain connectivity: uses and interpretations. Neuroimage,

52(3):1059–1069, 2010. Elsevier.

[53] D. Scanfeld, V. Scanfeld, and E. Larson. Dissemination of health information through social networks: Twitter and

antibiotics. American Journal of Infection Control, 38(3):182–188, 2010. Elsevier.

[54] J. Scott. Social Network Analysis. Sage, 2012.

[55] T. Sevimoglu and K. Arga. The role of protein interaction networks in systems biomedicine. Computational and

Structural Biotechnology Journal, 11(18):22–27, 2014. Elsevier.

[56] K. Supekar, V. Menon, D. Rubin, M. Musen, and M.D. Greicius. Network analysis of intrinsic functional brain

connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6):e1000100, 2008. Public Library of Science.

[57] R. Todeschini and V. Consonni. Molecular descriptors for chemoinformatics, volume 41. John Wiley & Sons, 2009.

[58] T. Valente. Network models of the diffusion of innovations. 1995. Hampton Press.

[59] T. Valente and R. Davis. Accelerating the diffusion of innovations using opinion leaders. The Annals of the American

Academy of Political and Social Science, 566(1):55–67, 1999. Sage Publications Sage CA: Thousand Oaks, CA.

13



[60] T. Valente and R. Fosados. Diffusion of innovations and network segmentation: the part played by people in

promoting health. Sexually Transmitted Diseases, 33(7):S23–S31, 2006. LWW.

[61] S. Wasserman and J. Galaskiewicz. Advances in social network analysis: Research in the social and behavioral

sciences, volume 171. Sage Publications, 1994.

[62] H. Wiener. Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1):17–

20, 1947. ACS Publications.

[63] J. Wu, T. Vallenius, K. Ovaska, J. Westermarck, T. Makela, and S. Hautaniemi. Integrated network analysis

platform for protein-protein interactions. Nature Methods, 6(1):75–77, 2009. Nature Publishing Group.

[64] K. Wu, Y. Taki, K. Sato, Y. Sassa, K. Inoue, R. Goto, K. Okada, R. Kawashima, Y. He, and A. Evans. The

overlapping community structure of structural brain network in young healthy individuals. PLoS One, 6(5):e19608,

2011. Public Library of Science.

[65] W. Xu, I. Chiu, Y. Chen, and T. Mukherjee. Twitter hashtags for health: applying network and content analyses to

understand the health knowledge sharing in a Twitter-based community of practice. Quality & Quantity, 49(4):1361–

1380, 2015. Springer.

[66] J. Yoon, A. Blumer, and K. Lee. An algorithm for modularity analysis of directed and weighted biological networks

based on edge-betweenness centrality. Bioinformatics, 22(24):3106–3108, 2006. Oxford Univ Press.

[67] A. Zalesky, A. Fornito, and E. Bullmore. Network-based statistic: identifying differences in brain networks. Neu-

roimage, 53(4):1197–1207, 2010. Elsevier.

[68] B. Zhang and S. Horvath. A general framework for weighted gene co-expression network analysis. Statistical

Applications in Genetics and Molecular Biology, 4(1):1128, 2005.

14


